Abstract:
The present disclosure is directed to a hybrid conductive ink including: silver nanoparticles and eutectic low melting point alloy particles, wherein a weight ratio of the eutectic low melting point alloy particles and the silver nanoparticles ranges from 1:20 to 1:5. Also provided herein are methods of forming an interconnect including a) depositing a hybrid conductive ink on a conductive element positioned on a substrate, wherein the hybrid conductive ink comprises silver nanoparticles and eutectic low melting point alloy particles, the eutectic low melting point alloy particles and the silver nanoparticles being in a weight ratio from about 1:20 to about 1:5; b) placing an electronic component onto the hybrid conductive ink; c) heating the substrate, conductive element, hybrid conductive ink and electronic component to a temperature sufficient i) to anneal the silver nanoparticles in the hybrid conductive ink and ii) to melt the low melting point eutectic alloy particles, wherein the melted low melting point eutectic alloy flows to occupy spaces between the annealed silver nanoparticles, d) allowing the melted low melting point eutectic alloy of the hybrid conductive ink to harden and fuse to the electronic component and the conductive element, thereby forming an interconnect. Electrical circuits including conductive traces and, optionally, interconnects formed with the hybrid conductive ink are also provided.
Abstract:
The present disclosure is directed to a hybrid conductive ink including: silver nanoparticles and eutectic low melting point alloy particles, wherein a weight ratio of the eutectic low melting point alloy particles and the silver nanoparticles ranges from 1:20 to 1:5. Also provided herein are methods of forming an interconnect including a) depositing a hybrid conductive ink on a conductive element positioned on a substrate, wherein the hybrid conductive ink comprises silver nanoparticles and eutectic low melting point alloy particles, the eutectic low melting point alloy particles and the silver nanoparticles being in a weight ratio from about 1:20 to about 1:5; b) placing an electronic component onto the hybrid conductive ink; c) heating the substrate, conductive element, hybrid conductive ink and electronic component to a temperature sufficient i) to anneal the silver nanoparticles in the hybrid conductive ink and ii) to melt the low melting point eutectic alloy particles, wherein the melted low melting point eutectic alloy flows to occupy spaces between the annealed silver nanoparticles, d) allowing the melted low melting point eutectic alloy of the hybrid conductive ink to harden and fuse to the electronic component and the conductive element, thereby forming an interconnect. Electrical circuits including conductive traces and, optionally, interconnects formed with the hybrid conductive ink are also provided.
Abstract:
A method of forming a printed pattern on a substrate includes printing a pattern onto the substrate with a conductive ink including a conductive material, a thermoplastic binder and a solvent, curing the printed pattern, and fusing the printed pattern by feeding the printed pattern through a fusing system operated at a temperature of about 20° C. to about 130° C. above the glass transition temperature of the thermoplastic binder and at least 120° C. at a minimum, a pressure of from about 50 psi to about 1500 psi, and a feed rate through the fusing system of about 1 m/min to about 100 m/min. The method may be done continuously. The method improves the sheet resistivity of the printed ink.