Abstract:
A clock generator includes: a first input to receive a global clock signal; a second input to receive a completion signal; a third input to receive differential outputs in a conversion cycle from a comparator; and a logic circuit configured to generate a control clock signal based at least in part on the global clock signal and the differential outputs, and to provide the control clock signal to the comparator for a next conversion cycle; and wherein the logic circuit is also configured to disable the control clock signal in response to the completion signal indicating a completion of required conversion cycles in a conversion phase.
Abstract:
An injection locked oscillator (ILO) circuit is disclosed. The ILO circuit may include a first clock injection stage including a first programmable inverter in series with a first self-biased inverter. The first injection stage may receive a first input clock having a first frequency and generate a first injection signal. The ILO circuit may further include a second clock injection stage including a second programmable inverter in series with a second self-biased inverter. The second injection stage may receive a second input clock signal having the first frequency and to generate a second injection signal. The ILO may further include a phase locked loop (PLL) stage including a multi-stage ring oscillator. The PLL stage may receive the first injection signal and the second injection signal and to generate an output clock signal based at least in part on the first frequency.
Abstract:
An analog-to-digital converter circuit is described. The analog-to-digital converter circuit comprises an amplifier circuit configured to receive a differential analog input signal at a first amplifier input associated with a first amplifier current path and a second amplifier input associated with a second amplifier current path, and to generate an amplified differential analog input signal at a first amplifier output associated with the first amplifier current path and a second amplifier output associated with the second amplifier current path; a first capacitor coupled between the first amplifier input and the second amplifier output; a second capacitor coupled between the second amplifier input and the first amplifier output; and a latch circuit having a first latch input coupled to the first amplifier output and a second latch input coupled to the second amplifier output, wherein the latch circuit is configured to generate a differential digital output signal, based upon the amplified differential analog input signal, at a first latch output and a second latch output.