摘要:
A method for producing L-threonine using a microorganism is provided. In the method, the threonine dehydratase (tdc) gene existing in the genomic DNA of the microorganism is partially deactivated using a recombination technique. For a microorganism strain with enhanced activity of threonine operon-containing enzymes and the phosphoenolpyruvate carboxylase (ppc) gene, the tdc gene engaged in one of the four threonine metabolic pathways is specifically deactivated, thereby markedly increasing the yield of L-threonine.
摘要:
The present invention provide a microorganism comprising an inactivated chromosomal tdcBC gene and an inactivated chromosomal pckA gene, which has remarkably improved productivity of L-threonine. Also, the present invention provides a method of producing L-threonine using the microorganism. The microorganism is prepared by incorporating by a recombination technique an antibiotic resistance gene into a pckA gene on the chromosome of a bacterial strain containing an L-threonine degradation-associated operon gene, tdcBC, which is inactivated. The microorganism has the effect of preventing degradation and intracellular influx of L-threonine due to the inactivation of the tdcBC operon gene, and includes more activated pathways for L-threonine biosynthesis. Therefore, the microorganism is useful for mass production of L-threonine because of being capable of producing L-threonine in high levels and high yields even in the presence of high concentrations of glucose.
摘要:
An L-threonine-producing Escherichia coli strain and a method for producing the same are provided. The Escherchia coli strain contains chromosomal DNA with inactivated metJ gene. Therefore, expression repression of threonine biosynthesis genes by a metJ gene product is prevented, thereby producing a high concentration of threonine. Further, a high concentration of L-threonine can be produced in high yield using the method.
摘要:
The present invention relates to an L-threonine-producing chromosomal fadR gene knock-out microorganism. The present invention further relates to a method for producing L-threonine using a fadR knock-out microorganism. Mutated microorganisms of the present invention are capable of increased L-threonine production.
摘要:
Provided are a microorganism capable of producing L-threonine and having an inactivated galR gene, a method of producing the same and a method of producing L-threonine using the microorganism. The microorganism can be used to produce L-threonine in high yield.
摘要:
An IR sensing transistor according to an exemplary embodiment of the present invention includes: a light blocking layer formed on a substrate; a gate insulating layer formed on the light blocking layer; a semiconductor formed on the gate insulating layer; a pair of ohmic contact members formed on the semiconductor; a source electrode and a drain electrode formed on respective ones of the ohmic contact members; a passivation layer formed on the source electrode and the drain electrode; and a gate electrode formed on the passivation layer, wherein substantially all of the gate insulating layer lies on the light blocking layer.
摘要:
The present invention relates to Corynebacterium sp. that is transformed with an Escherichia sp.-derived fructokinase gene to express fructokinase showing a sufficient activity of converting fructose into fructose-6-phosphate, thereby preventing unnecessary energy consumption, and a method for producing L-amino acids using the strain. The transformed Corynebacterium sp. of the present invention is able to express fructokinase from the Escherichia-derived fructokinase gene to prevent unnecessary energy consumption during fructose metabolism, leading to more cost-effective production of L-amino acids. Therefore, it can be widely used for the effective production of L-amino acids.
摘要:
The present invention relates to Corynebacterium sp. that is transformed with an Escherichia sp.-derived fructokinase gene to express fructokinase showing a sufficient activity of converting fructose into fructose-6-phosphate, thereby preventing unnecessary energy consumption, and a method for producing L-amino acids using the strain. The transformed Corynebacterium sp. of the present invention is able to express fructokinase from the Escherichia-derived fructokinase gene to prevent unnecessary energy consumption during fructose metabolism, leading to more cost-effective production of L-amino acids. Therefore, it can be widely used for the effective production of L-amino acids.
摘要:
An optical sensor preventing damage to a semiconductor layer, and preventing a disconnection and a short circuit of a source electrode and a drain electrode, and a manufacturing method of the optical sensor is provided. The optical sensor includes: a substrate; an infrared ray sensing thin film transistor including a first semiconductor layer disposed on the substrate; a visible ray sensing thin film transistor including a second semiconductor layer disposed on the substrate; a switching thin film transistor including a third semiconductor layer disposed on the substrate; and a semiconductor passivation layer enclosing an upper surface and a side surface of an end portion of at least one of the first semiconductor layer, the second semiconductor layer, and the third semiconductor layer.