摘要:
A magnetoresistance effect element provided with a spin valve film composed of a first magnetic layer formed on a metallic buffer layer, a middle non-magnetic layer formed on the first magnetic layer, and a second magnetic layer formed on the non-magnetic layer, has an atomic-diffusion barrier layer whose average thickness is 2 nm or less formed in the interface between the metallic buffer layer and the first magnetic layer. Or a magnetoresistance effect element provided with a spin valve film composed of a first magnetic layer composed of a laminated film of a magnetic undercoat layer and a ferromagnetic layer, a middle non-magnetic layer formed on the first magnetic layer, and a second magnetic layer formed on the middle non-magnetic layer, has an atomic-diffusion barrier layer whose average thickness is 2 nm or less formed in the interface between the magnetic undercoat layer and the ferromagnetic layer.
摘要:
A magnetoresistance effect element provided with a spin valve film composed of a first magnetic layer formed on a metallic buffer layer, a middle non-magnetic layer formed on the first magnetic layer, and a second magnetic layer formed on the non-magnetic layer, has an atomic-diffusion barrier layer whose average thickness is 2 nm or less formed in the interface between the metallic buffer layer and the first magnetic layer. Or a magnetoresistance effect element provided with a spin valve film composed of a first magnetic layer composed of a laminated film of a magnetic undercoat layer and a ferromagnetic layer, a middle non-magnetic layer formed on the first magnetic layer, and a second magnetic layer formed on the middle non-magnetic layer, has an atomic-diffusion barrier layer whose average thickness is 2 nm or less formed in the interface between the magnetic undercoat layer and the ferromagnetic layer.
摘要:
A magneto-resistance effect element comprising a spin valve film including a first magnetic layer, a second magnetic layer and a non-magnetic layer interposed between the first magnetic layer and the second magnetic layer. Among the first and the second magnetic layers, in at least one of the magnetic layers, close-packed faces of crystal grains which constitute the magnetic layer are isotropically dispersed. Such a magnetic layer, by setting a film thickness of an under layer having an identical crystal structure with the magnetic layer at 2.0 nm or less and by dispersing isotropically close-packed faces of crystal grains constituting the under layer, can be obtained with reproducibility. According to a magneto-resistance effect element comprising such a spin valve film, while maintaining a large MR change rate, for example, magnetostriction constant can satisfy such a low magnetostriction as 1.times.10.sup.-6 or less. Further, excellent soft magnetic property can be provided.
摘要:
A magnetoresistance effect element includes a free layer, a pinned layer and a non-magnetic intermediate layer interposed between the free layer and the pinned layer. Additionally, a metal barrier layer is provided adjacent to the first magnetic layer. An electron reflecting layer located adjacent to the metal barrier layer contains at least one selected from oxides, nitrides, carbides, fluorides, chlorides, sulfides and borides.
摘要:
According to the another aspect of the invention, a magnetoresistance effect element having a magnetoresistance effect film which includes a crystal growth controlling layer as one of films therein, characterized in that a roughness along a boundary between films overlying said crystal growth controlling layer is smaller than a roughness along a boundary between films underlying said crystal growth controlling layer is provided. According to the another aspect of the invention, a magnetoresistance effect element comprising a free layer, pinned layer and a non-magnetic intermediate layer interposed between said free layer and pinned layer, characterized in further comprising a metal barrier layer provided adjacent to said first magnetic layer, and an electron reflecting layer located adjacent to said metal barrier layer and containing at least one selected from oxides, nitrides, carbides, fluorides, chlorides, sulfides and borides is also provided.
摘要:
Disclosed are a high-sensitivity and high-reliability magnetoresistance effect device (MR device) in which bias point designing is easy, and also a magnetic head, a magnetic head assembly and a magnetic recording/reproducing system incorporating the MR device. In the MR device incorporating a spin valve film, the magnetization direction of the free layer is at a certain angle to the magnetization direction of a second ferromagnetic layer therein when the applied magnetic field is zero. In this, the pinned magnetic layer comprises a pair of ferromagnetic films as antiferromagnetically coupled to each other via a coupling film existing therebetween. The device is provided with a means of keeping the magnetization direction of either one of the pair of ferromagnetic films constituting the pinned magnetic layer, and with a nonmagnetic high-conductivity layer as disposed adjacent to a first ferromagnetic layer on the side opposite to the side on which the first ferromagnetic layer is contacted with a nonmagnetic spacer layer. With that constitution, the device has extremely high sensitivity, and the bias point in the device is well controlled.
摘要:
Disclosed are a high-sensitivity and high-reliability magnetoresistance effect device (MR device) in which bias point designing is easy, and also a magnetic head, a magnetic head assembly and a magnetic recording/reproducing system incorporating the MR device. In the MR device incorporating a spin valve film, the magnetization direction of the free layer is at a certain angle to the magnetization direction of a second ferromagnetic layer therein when the applied magnetic field is zero. In this, the pinned magnetic layer comprises a pair of ferromagnetic films as antiferromagnetically coupled to each other via a coupling film existing therebetween. The device is provided with a means of keeping the magnetization direction of either one of the pair of ferromagnetic films constituting the pinned magnetic layer, and with a nonmagnetic high-conductivity layer as disposed adjacent to a first ferromagnetic layer on the side opposite to the side on which the first ferromagnetic layer is contacted with a nonmagnetic spacer layer. With that constitution, the device has extremely high sensitivity, and the bias point in the device is well controlled.
摘要:
Disclosed are a high-sensitivity and high-reliability magnetoresistance effect device (MR device) in which bias point designing is easy, and also a magnetic head, a magnetic head assembly and a magnetic recording/reproducing system incorporating the MR device. In the MR device incorporating a spin valve film, the magnetization direction of the free layer is at a certain angle to the magnetization direction of a second ferromagnetic layer therein when the applied magnetic field is zero. In this, the pinned magnetic layer comprises a pair of ferromagnetic films as antiferromagnetically coupled to each other via a coupling film existing therebetween. The device is provided with a means of keeping the magnetization direction of either one of the pair of ferromagnetic films constituting the pinned magnetic layer, and with a nonmagnetic high-conductivity layer as disposed adjacent to a first ferromagnetic layer on the side opposite to the side on which the first ferromagnetic layer is contacted with a nonmagnetic spacer layer. With that constitution, the device has extremely high sensitivity, and the bias point in the device is well controlled.
摘要:
Disclosed are a high-sensitivity and high-reliability magnetoresistance effect device (MR device) in which bias point designing is easy, and also a magnetic head, a magnetic head assembly and a magnetic recording/reproducing system incorporating the MR device. In the MR device incorporating a spin valve film, the magnetization direction of the free layer is at a certain angle to the magnetization direction of a second ferromagnetic layer therein when the applied magnetic field is zero. In this, the pinned magnetic layer comprises a pair of ferromagnetic films as antiferromagnetically coupled to each other via a coupling film existing therebetween. The device is provided with a means of keeping the magnetization direction of either one of the pair of ferromagnetic films constituting the pinned magnetic layer, and with a nonmagnetic high-conductivity layer as disposed adjacent to a first ferromagnetic layer on the side opposite to the side on which the first ferromagnetic layer is contacted with a nonmagnetic spacer layer. With that constitution, the device has extremely high sensitivity, and the bias point in the device is well controlled.
摘要:
A magnetoresistance effect element includes a nonmagnetic spacer layer, first and second ferromagnetic layer separated by the nonmagnetic spacer layer, and a nonmagnetic conductivity layer. The first ferromagnetic layer has a magnetization direction at an angle relative to a magnetization direction of the second ferromagnetic layer at zero applied magnetic field. The second ferromagnetic layer has first and second ferromagnetic films antiferromagnetically coupled to one another and an antiferromagnetically coupling film located between and in contact with the first and second ferromagnetic films. The magnetization of the first ferromagnetic layer freely rotates in a magnetic field signal. The nonmagnetic conductivity layer is disposed in contact with the first ferromagnetic layer so that the first ferromagnetic layer is disposed between the nonmagnetic high-conductivity layer and the nonmagnetic spacer layer. The first ferromagnetic layer has a film thickness between 0.5 nanometers and 4.5 nanometers.