Abstract:
A device, system and method for the detection and screening of plastic microparticles in a sample is disclosed. A nanoporous silicon nitride membrane is used to entrap plastic microparticles contained in the sample. The sample may be a water sample, an air sample, or other liquid or gas sample. The entrapped plastic microparticles are then heated or otherwise processed on the nanoporous silicon nitride membrane. An imaging system observes the nanoporous silicon nitride membrane with the entrapped plastic microparticles to determine the type and quantity of the various plastic microparticles that are entrapped on the membrane.
Abstract:
Certain disclosed embodiments concern systems and methods of preparing dialysate for use in a home dialysis system that is compact and light-weight relative to existing systems and consumes relatively low amounts of energy. The method includes coupling a household water stream to a dialysis system; filtering the water stream; heating the water stream to at least about 138 degrees Celsius in a non-batch process to produce a heated water stream; maintaining the heated water stream at or above at least about 138 degrees Celsius for at least about two seconds; cooling the heated water stream to produce a cooled water stream; ultrafiltering the cooled water stream; and mixing dialysate components into the cooled water stream in a non-batch process.
Abstract:
A waste water treatment system including an electrolysis treatment system and three membrane concentration systems. The electrolysis treatment system includes a first chamber that receives waste water and produces treated waste water, a second chamber that receives first recycled water and produces dilute acid discharge, and a third chamber that receives second recycled water and produces dilute caustic discharge. An anion exchange membrane separates the first chamber from the second chamber. A cation exchange membrane separates the first chamber from the third chamber. The membrane concentration system receives the treated waste water and produces a concentrated aqueous sodium sulfate product and a pure water product. A first thermal concentration system receives the dilute acid discharge and produces first recycled water and a concentrated acid product. The second thermal concentration system receives the dilute caustic discharge and produces second recycled water and a concentrated aqueous sodium sulfate product.
Abstract:
Provided is a non-hydrocarbon gas separation device or the like capable of separating a non-hydrocarbon gas from a natural gas containing a heavy hydrocarbon. The non-hydrocarbon gas separation device is configured to separate a non-hydrocarbon gas from a natural gas. The natural gas containing a heavy hydrocarbon, the heavy hydrocarbon having 5 or more carbon atoms, is supplied to a separation module (2). The natural gas having been separated from the non-hydrocarbon gas is allowed to outflow from the separation module (2), and the non-hydrocarbon gas having been separated from the natural gas is discharged from the separation module (2). An inorganic membrane (20), which is housed in the separation module (2), and is made of an inorganic material is configured to allow the non-hydrocarbon gas contained in the natural gas to permeate therethrough to a discharge side, and to allow the natural gas having been separated from the non-hydrocarbon gas to flow to an outflow side. A heating unit (3) is configured to heat the natural gas to be supplied to the separation module (2) so that a temperature in the separation module (2) is kept at a temperature higher than a dew point temperature of the heavy hydrocarbon.
Abstract:
Various embodiments disclosed relate to methods of separating volatile compounds from a liquid feed mixture comprising an emulsion. In various embodiments, the method includes contacting a first side of a first membrane with a liquid feed mixture including an emulsion having a polymer, and at least one volatile compound. The method can also include contacting a second side of the first membrane with a sweep medium including at least one a sweep fluid to produce a permeate mixture on the second side of the first membrane and a retentate mixture on the first side of the first membrane, wherein the permeate mixture is enriched in the volatile compound, and the retentate mixture is depleted in the volatile compound.
Abstract:
Membrane distillation (MD) systems include at least two MD modules arranged in series, each of at least two MD modules including a condensing media inlet operable to receive a condensing media and a condensing media outlet, a feed inlet operable to receive a feed media and a feed outlet, and a first heating element positioned and operable to heat a feed prior to or upon introduction of the feed to a first of the at least two MD modules, wherein a stream exiting the feed outlet of the first of the at least two MD modules is introduced to the second of the at least two MD modules. Other MD systems include at least two MD modules arranged in parallel.
Abstract:
An on-board fuel separation system includes a supply fuel tank configured to store an input fuel stream; a fuel separator fluidly coupled to the supply fuel tank and configured to separate the input fuel stream into a first fractional fuel stream and a second fractional fuel stream. The fuel separator includes a membrane that includes a plurality of pores sized based on a molecular size of one or more components of the first fractional fuel stream. The system includes a first fractional fuel tank fluidly coupled to the fuel separator to receive the first fractional fuel stream passed through the membrane and defined by a first auto-ignition characteristic value. The system includes a second fractional fuel stream coupled to the fuel separator to receive the second fractional fuel stream from the fuel separator that is defined by a second auto-ignition characteristic value that is different than the first auto-ignition characteristic value.
Abstract:
A corrosion-resistant cover system, having a corrosion-resistant cover structured and configured to be arrangeable around an object having one or more metallic surfaces that are susceptible to corrosion. The corrosion-resistant cover is operable to provide increased corrosion resistance to the object by preventing contact between the one or more metallic surfaces and ambient conditions exterior to the corrosion-resistant cover.
Abstract:
Separation processes using osmotically driven membrane systems are disclosed generally involving the extraction of solvent from a first solution to concentrate a solute by using a second concentrated solution to draw the solvent from the first solution across a semi-permeable membrane. Pre-treatment and post-treatment may also enhance the osmotically driven membrane processes.
Abstract:
Apparatuses and systems for removing water vapor from a gas stream and for providing water purification, recovery and/or concentration. The apparatuses and systems employ a graphene oxide or a perforated graphene monolayer membrane to separate liquid water molecules and/or water vapor molecules from gasses, liquids, and other substances such as a wet muck or an aqueous sample. In one embodiment, an apparatus for removing water from a gas or liquid stream includes a first lumen, a second lumen, and a graphene oxide membrane separating the first lumen from the second lumen. Water molecules within a humid gas or liquid stream introduced into the first lumen pass through the graphene oxide membrane into a dry gas stream introduced into the second lumen.