Abstract:
The invention relates to hyperbaric devices for inactivating microorganisms and viruses while retaining their immunogenicity and for making and producing the soluble, disaggregated, refolded or active immunogenic or therapeutic proteins from inclusion bodies produced from prokaryotes or eukaryotes. The invention encompasses hyperbaric methods for inactivating pathogenic organisms, and methods for producing vaccine compositions using the inactivated pathogens. The hyperbarically inactivated microorganisms are safer and more immunogenic than chemically inactivated microorganisms. Similarly, the solubilized proteins have superior properties compared to more heavily aggregated proteins, including reduced non-specific immune reactions.
Abstract:
The present invention encompasses vaccines or compositions comprising the chimeric KSAC protein that possesses immunogenic and protective properties, and methods of use including administering to an animal the antigenic KSAC protein thereof to protect animals. The invention also encompasses methods for making and producing the soluble, disaggregated, refolded or active proteins from inclusion bodies produced from prokaryotes or eukaryotes.
Abstract:
The present invention encompasses vaccines or compositions comprising the chimeric KSAC protein that possesses immunogenic and protective properties, and methods of use including administering to an animal the antigenic KSAC protein thereof to protect animals. The invention also encompasses methods for making and producing the soluble, disaggregated, refolded or active proteins from inclusion bodies produced from prokaryotes or eukaryotes.
Abstract:
The present invention relates to a method for preparing 7-dehydrocholesterol and/or the biosynthetic intermediates and/or secondary products thereof by culturing organisms, in particular yeasts. Furthermore, the invention relates to the preparation of the nucleic acid constructs required for preparing the genetically modified organisms and to said genetically modified organisms, in particular yeasts, themselves.
Abstract:
A composition comprising a polypeptide ligated to an oligonucleotide through a sterol linker. A method of ligating a polypeptide to an oligonucleotide, comprising a polypeptide having a hedgehog steroyl transferase catalytic domain at the C-terminal of the polypeptide with an electrophilic residue, e.g., glycine, between polypeptide and the hedgehog steroyl transferase catalytic domain, and a steroylated oligonucleotide in solution, and permitting a reaction to cleave the hedgehog steroyl transferase catalytic domain from the polypeptide while ligating the steroylated oligonucleotide to the glycine at the C-terminal of the polypeptide. The oligonucleotide may be, for example, a therapeutic, diagnostic, or affinity ligand.
Abstract:
According to the present invention, there can be provided a process for producing 7-dehydrocholesterol (7DHC), comprising culturing, in a medium, a 7DHC-producing Labyrinthulea microorganism in which sterol 24-C-methyltransferase activity is reduced or lost as compared to a parent strain, allowing 7DHC to be produced and accumulated in the culture, and collecting the 7DHC from the culture; and a process for producing vitamin D3, comprising irradiating, with ultraviolet light, 7-dehydrocholesterol produced by the production process.
Abstract:
Compositions and methods for preventing, treating and detecting leishmaniasis are disclosed. The compositions generally comprise polypeptides comprising Leishmania antigens as well as polynucleotides encoding such polypeptides.
Abstract:
The present invention relates to a method for preparing 7-dehydrocholesterol and/or the biosynthetic intermediates and/or secondary products thereof by culturing organisms, in particular yeasts. Furthermore, the invention relates to the preparation of the nucleic acid constructs required for preparing the genetically modified organisms and to said genetically modified organisms, in particular yeasts, themselves.
Abstract:
A composition comprising a polypeptide ligated to an oligonucleotide through a sterol linker. A method of ligating a polypeptide to an oligonucleotide, comprising a polypeptide having a hedgehog steroyl transferse catalytic domain at the C-terminal of the polypeptide with an electrophilic residue, e.g., glycine, between polypeptide and the hedgehog steroyl transferse catalytic domain, and a steroylated oligonucleotide in solution, and permitting a reaction to cleave the hedgehog steroyl transferse catalytic domain from the polypeptide while ligating the steroylated oligonucleotide to the glycine at the C-terminal of the polypeptide. The oligonucleotide may be, for example, a therapeutic, diagnostic, or affinity ligand.
Abstract:
Compositions and methods for preventing, treating and detecting leishmaniasis are disclosed. The compositions generally comprise polypeptides comprising Leishmania antigens as well as polynucleotides encoding such polypeptides.