Abstract:
The present invention relates to an alkali metal generating agent and others for formation of a photo-cathode or a secondary-electron emitting surface capable of stably generating an alkali metal. The alkali metal generating agent is used in formation of a photo-cathode for emitting a photoelectron corresponding to incident light, or in formation of a secondary-electron emitting surface for emitting secondary electrons corresponding to an incident electron. Particularly, the alkali metal generating agent contains at least an oxidizer comprising at least one vanadate with an alkali metal ion as a counter cation, and a reducer for reducing the ion. An alkali metal generating device comprises at least the alkali metal generating agent and a case housing it, and the case is provided with a discharge port for discharging the vapor of the alkali metal.
Abstract:
The present invention relates to an alkali metal generating agent and others for formation of a photo-cathode or a secondary-electron emitting surface capable of stably generating an alkali metal. The alkali metal generating agent is used in formation of a photo-cathode for emitting a photoelectron corresponding to incident light, or in formation of a secondary-electron emitting surface for emitting secondary electrons corresponding to an incident electron. Particularly, the alkali metal generating agent contains at least an oxidizer comprising at least one tungstate with an alkali metal ion as a counter cation, and a reducer for reducing the ion. An alkali metal generating device comprises at least the alkali metal generating agent and a case housing it, and the case is provided with a discharge port for discharging the vapor of the alkali metal.
Abstract:
A cathode (5) for emitting photoelectrons or secondary electrons comprises a nickel electrode substrate (5c) with an aluminum layer (5b) deposited on it; an intermediate layer (5a) consisting of carbon nanotubes formed on the aluminum layer; and an alkaline metal layer (5d) formed on the intermediate layer (5a) and composed, for example, of particles of an alkali antimony compound that either emits photoelectrons in response to incident light or emits secondary electrons in response to incident electrons. The decrease in defect density of the particles reduces the probability of recombination of electron and hole remarkably, thus increasing quantum efficiency.
Abstract:
Cathodoluminescent field emission display devices feature phosphor biasing, amplification material layers for secondary electron emissions, oxide secondary emission enhancement layers, and ion barrier layers of silicon nitride, to provide high-efficiency, high-brightness field emission displays with improved operating characteristics and durability. The amplification materials include copper-barium, copper-beryllium, gold-barium, gold-calcium, silver-magnesium and tungsten-barium-gold, and other high amplification factor materials fashioned to produce high-level secondary electron emissions within a field emission display device. For enhanced secondary electron emissions, an amplification material layer can be coated with a near mono-molecular film consisting essentially of an oxide of barium, beryllium, calcium, magnesium or strontium. Use of a high amplification factor film as a phosphor biasing electrode, and variability of the phosphor biasing potential to achieve brightness or gray scale control are further described in the disclosure.
Abstract:
A cathodoluminescent field emission display device features an enhancement layer disposed over at least selected portions of an outer surface of an extraction grid of the device. The enhancement layer provides enhanced secondary electron emissions. The enhancement layer is preferably near mono-molecular film of an oxide of barium, beryllium, calcium, magnesium, strontium or aluminum.
Abstract:
A photomultiplier is constituted by a photocathode and an electron multiplier having a typical structure in which a dynode unit having a plurality of dynode plates stacked in an incident direction of photoelectrons, an anode plate, and an inverting dynode plate are sequentially stacked. Through holes for injecting a metal vapor are formed in the inverting dynode plate to form secondary electron emitting layers on the surfaces of dynodes supported by the dynode plates, and the photocathode. With this structure, the secondary electron emitting layers are uniformly formed on the surfaces of the dynodes. Therefore, variations in output signals obtained from anodes can be reduced regardless of the positions of the photocathode.
Abstract:
Before being introduced within the intensifier, the grid which is nearest the anode is coated with a layer of electrically conductive material having the property of oxidizing alkali metals. This has the effect of elininating any parasitic illumination of the viewing screen caused by alkali metals unintentionally deposited on the grid at the time of formation of the photocathode.
Abstract:
An improved microchannel plate is shown fabricated from tubes formed from at least two types of cladding glass and a core glass, including a first cladding of partial acid resistant glass and a second, super cladding of high acid resistant glass. The first cladding may surround a hollow core that forms a passage or it may surround a core of low acid resistant glass which is removed by an acid bath to form the passage. The second cladding surrounds the first, while the opening of the passage surrounded by the first cladding is tapered by an acid etch that does not affect the second cladding. Thus, the ratio of the open area of the passages to their end surface area is controlled only by the removal of the first cladding.
Abstract:
Disclosed are the processes of how to fabricate the microchannel plate for use in electron image intensifying by using a number of glass pipes, each consisting of glass material containing oxides of alkaline earth metals, i.e., magnesium oxide (MgO) or a mixture of magnesium oxide (MgO) and calcium oxide (CaO).
Abstract:
A method for producing a multichannel plate containing metal dynodes and having a plurality of generally parallel channels for use in structures for amplifying or converting optical images or other two-dimensional signal patterns by secondary electron multiplication, which method includes:producing a negative mold of the plate by:(i) providing a body having at least the thickness of the plate to be produced and made of an electrically insulating material whose ability to be removed from the body is altered by exposure to a selected radiation;(ii) irradiating the body with the selected radiation in a pattern corresponding to the plate to be produced and in a manner to render portions of the body having the form of a grid surrounding the channels more easily removable than the remaining portions of the body; and(iii) removing the more easily removable portions of the body to leave columnar structures corresponding to the channels in the plate;depositing metal layers and intermediate layers alternatingly in the openings in the negative mold or in a secondary negative mold produced therefrom, the metal layers being deposited electrolytically and forming dynodes which are spaced apart in the direction of the channels; andremoving the negative mold from the deposited layers.