摘要:
According to one embodiment, a III-nitride transistor includes a conduction channel formed between first and second III-nitride bodies, the conduction channel including a two-dimensional electron gas. The transistor also includes at least one gate dielectric layer having a charge confined within to cause an interrupted region of the conduction channel and a gate electrode operable to restore the interrupted region of the conduction channel. The transistor can be an enhancement mode transistor. In one embodiment, the gate dielectric layer is a silicon nitride layer. In another embodiment, the at least one gate dielectric layer is a silicon oxide layer. The charge can be ion implanted into the at least one gate dielectric layer. The at least one gate dielectric layer can also be grown with the charge.
摘要:
An embodiment of the invention relates to a memory comprising a strained double-heterostructure having an inner semiconductor layer which is sandwiched between two outer semiconductor layers, wherein the lattice constant of the inner semiconductor layer differs from the lattice constants of the outer semiconductor layers, the resulting lattice strain in the double-heterostructure inducing the formation of at least one quantum dot inside the inner semiconductor layer, said at least one quantum dot being capable of storing charge carriers therein, and wherein, due to the lattice strain, the at least one quantum dot has an emission barrier of 1.15 eV or higher, and provides an energy state density of at least three energy states per 1000 nm3, all said at least three energy states being located in an energy band of 50 meV or less.
摘要:
A layered semiconductor device with a nonvolatile three dimensional memory comprises a storage channel which stores charge carriers. Charge carriers flow laterally through the storage channel from a source to a drain. Isolation material, either a Schottky barrier or a heterojunction, located in a trench of an upper layer controllably retains the charge within the a storage portion determined by the confining means. The charge is retained for a time determined by the isolation materials' nonvolatile characteristics or until a change of voltage on the isolation material and the source and drain permit a read operation. Flow of charge through an underlying sense channel is affected by the presence of charge within the storage channel, thus the presences of charge in the memory can be easily detected.
摘要:
A non-volatile field-effect device. The non-volatile field-effect device includes a source, a drain, a channel-formation portion and a memristive gate. The channel-formation portion is disposed between and coupled with the source and the drain. The memristive gate is disposed over the channel-formation portion and coupled with the channel-formation portion. The memristive gate includes a plurality of mobile ions and a confinement structure for the plurality of mobile ions. Moreover, the memristive gate is configured to switch the channel-formation portion from a first conductivity state to a second conductivity state in response to migration of the plurality of mobile ions within the confinement structure.
摘要:
A non-volatile field-effect device. The non-volatile field-effect device includes a source, a drain, a channel-formation portion and a memristive gate. The channel-formation portion is disposed between and coupled with the source and the drain. The memristive gate is disposed over the channel-formation portion and coupled with the channel-formation portion. The memristive gate includes a plurality of mobile ions and a confinement structure for the plurality of mobile ions. Moreover, the memristive gate is configured to switch the channel-formation portion from a first conductivity state to a second conductivity state in response to migration of the plurality of mobile ions within the confinement structure.
摘要:
According to one embodiment, a III-nitride transistor includes a conduction channel formed between first and second III-nitride bodies, the conduction channel including a two-dimensional electron gas. The transistor also includes at least one gate dielectric layer having a charge confined within to cause an interrupted region of the conduction channel and a gate electrode operable to restore the interrupted region of the conduction channel. The transistor can be an enhancement mode transistor. In one embodiment, the gate dielectric layer is a silicon nitride layer. In another embodiment, the at least one gate dielectric layer is a silicon oxide layer. The charge can be ion implanted into the at least one gate dielectric layer. The at least one gate dielectric layer can also be grown with the charge.
摘要:
A regular tetrahedral groove is formed in a wafer, and a memory unit is formed, which includes a channel layer as a first semiconductor layer to serve as a channel, a three-layer structure floating layer as a second semiconductor layer to serve as a floating gate, and an electrode contact layer as a third semiconductor layer to secure drain contact. The floating layer is formed into a three-layer structure of a p-AlGaAs layer, an i-InGaAs layer and a p-AlGaAs layer. It is possible to provide a semiconductor device capable of securing its sufficient functionality at a room temperature by using a quantum dot structure, and achieving an ultimate high-density integration with high reliability. Also provided is a method capable of easily manufacturing semiconductor devices having such a construction.