Abstract:
The present disclosure relates to anti-IgE antibodies that bind to novel antigenic epitopes of the CsmX domain, e.g., SVPHPRCHCGAGRA (SEQ ID NO: 4) and the uses thereof in treating IgE-mediated diseases.
Abstract:
Aptamers that bind to and inhibit CTLA-4 and uses thereof in enhancing immune activities, and treating cancer and HIV infection are provided.
Abstract:
Disclosed herein is an aptamer targeting a MHC-presented peptide and its uses thereof. The MHC-presented peptide is expressed in various cancer cells; therefor, the aptamer of the disclosure is useful as a bio-tool to label and/or treat peptide-presenting cancer cells. Also disclosed herein is a pharmaceutical composition containing the aptamer.
Abstract:
The present invention relates to a technology to provide segmental aneuploidy progeny strains of Trichoderma reesei. In particular, the present invention relates to a method to produce segmental aneuploidy progeny strains of Trichoderma reesei via sexual crossing of two parent haploid strains with chromosome heterozygosity (e.g. one having scaffold M and scaffold 33, the other having scaffold F and scaffold X), preferably at least one of which includes a non-homologous end joining (NHEJ) gene. The present invention also relates to stable, segmental aneuploidy progeny strains of richoderma reesei thus produced which particularly exhibit enhanced gene expression or activities of carbohydrate-active enzymes (CAZymes) and more particularly prevent returning to euploidy for an extended period of time.
Abstract:
Disclosed herein is a bi-specific antibody that specifically directs a therapeutic agent to a cancer cell by targeting a tumor antigen of the cancer cell, and thereby suppresses the growth of the cancer or blocking the invasion or metastasis of the cancer. The bi-specific antibody of the present disclosure includes a first antigen binding site that binds to polyethylene glycol (PEG); and a second antigen binding site that binds to a target ligand, such as a tumor antigen.
Abstract:
The present invention provides a recombinant DNA molecule encoding a fusion protein, comprising a first DNA sequence encoding a high-efficiency transit peptide operably linked to a second DNA sequence encoding a passenger protein, wherein the high-efficiency transit peptide is selected from the group consisting of transit peptides of the precursors of translocon at the inner envelope membrane of chloroplasts 40 kD (prTic40), chaperonin 10-2 (prCpn10-2), Fibrillin 1B (prFibrillin), ATP sulfurylase 1 (prAPS1), ATP sulfurylase 3 (prAPS3), 5′-adenylylsulfate reductase 3 (prAPR3), stromal ascorbate peroxidase (prsAPX), prTic40-E2A (a prTic40 variant), prCpn10-1-ΔC7C37S (a chaperonin 10-1 variant), a functional fragment of any of the transit peptides and an equivalent thereof. And the present invention also provides a method of high efficiency delivery of a protein into plastids using the high-efficiency transit peptides.
Abstract:
A system and method thereof for collecting and concentrating a biologic substance of interest is provided. The biologic of interest obtained from a biologic sample present at an initial low concentration (or low number counts) can be captured and released through a collection device of the system to an intermediate second concentration, and further recovered through a concentration device of the system to a third concentration, thereby facilitating subsequent detection, characterization, enumeration, immunostaining, inspection, imaging, culturing, molecular analysis, and/or other assays.
Abstract:
The preset invention relates to a new method for enhancing wound healing comprising administering a subject in need thereof with a therapeutically effective amount of a tilapia piscidin (TP), which is selected from the group consisting of TP1, TP2, TP3, TP4, TP5 and combination thereof. A composition or pharmaceutical composition comprising the TP are also provided.
Abstract:
An adaptor for use in amplifying all linear, double-stranded nucleic acid molecules of unknown sequences in a sample is disclosed. The adaptor consists of: (1) the first oligonucleotide (P-oligo) with a phosphate at the 5′ end and without an additional thymine nucleotide at the 3′ end; and (2) the second oligonucleotide (T˜oligo) with an extra 3′-T and without a 5′-phosphate. The P-oligo and T-oligo are complementary to each other except at the 3′-T (thymine) in the T-oligo. The adaptor is ligated to nucleic acids of unknown sequences which have an extra A in the 3′ end (3′˜A overhang) to form adaptor-ligated target nucleic acids. The T-oligo is then employed as a single primer for T-oligo-primed polymerase chain reaction (TOP-PCR) and amplifies the nucleic acids of unknown sequences in full-length.