Abstract:
Provided is an organic electroluminescent device that exhibits an efficient host-dopant energy transfer mechanism, and thus, expresses a certain high-efficiency electroluminescent performance, based on improved electron density distribution. The organic electroluminescent device also overcomes low initial efficiency and short operation life property, and secures high-performance electroluminescent performance with high efficiency and long life property for each color.
Abstract:
A mobile terminal and an operating method of the mobile terminal are provided. The mobile terminal may be coupled, either wirelessly or by wire, to an external terminal and the mobile terminal may thus receive sync data including information regarding a webpage currently being displayed by the external terminal from the external terminal or a server. The mobile terminal may display the same webpage as is currently being displayed by the external terminal based on the received sync data.
Abstract:
Provided is a handover method of a wireless communication system using a hierarchical cellular scheme. In the method, signal quality of a serving node is measured, so that whether to start scanning for a handover is determined. When the scanning for the handover starts, signal qualities of a serving cell including the serving node and one or more neighbor cells are measured through a first preamble including a first identifier for distinguishing a cell. An intra-cell handover or an inter-cell handover is selected using the signal qualities of the serving cell and the neighbor cells. Therefore, a terminal can easily distinguish between the inter-cell handover and the intra-cell handover, and an overhead during a handover can be reduced because an intra-cell handover procedure is simplified.
Abstract:
A thin film transistor including: an active layer formed on a substrate; a gate insulating layer pattern formed on a predetermined region of the active layer; a gate electrode formed on a predetermined region of the gate insulating layer pattern; an etching preventing layer pattern covering the gate insulating layer pattern and the gate electrode; and a source member and a drain member formed on the active layer and the etching preventing layer pattern.
Abstract:
An LCD device having improved reliability is disclosed.The LCD device includes an LCD panel comprising a plurality of gate lines and a plurality of data lines crossing the plurality of gate lines, a bottom cover disposed under the LCD panel, a top case encompassing an edge portion of an upper surface of the LCD panel and coupled to the bottom cover, a control PCB disposed on a lower surface of the bottom cover, a data driving PCB disposed at a side of the LCD panel and supplying a data signal to the plurality of data lines, a plurality of chip-on-films (COFs) connected the data driving PCB and the LCD panel, a plurality of flexible flat cables (FFCs) connected the data driving PCB and the control PCB, and a protection tape in which an adhesive material is coated on a surface other than areas corresponding to the FFCs and a plurality of grooves corresponding to the FFCs are formed at a side of the protection tape.
Abstract:
Disclosed are a method for treating an aging-related disease and a method for screening a therapeutic agent for an aging-related disease. The method for treating an aging-related disease includes administering to a subject a progerin expression inhibitor as an active ingredient. The method for screening a therapeutic agent for an aging-related disease includes selecting a candidate drug inhibitory of progerin expression.
Abstract:
Provided is a video encoding apparatus, including a signal separator to separate a differential image block into a first domain and a second domain, based on a boundary line included in the differential image block, the differential image block indicating a difference between an original image and a prediction image with respect to the original image, a transform encoder to perform a transform encoding with respect to the first domain using a discrete cosine transform (DCT), a quantization unit to quantize an output of the transform encoding unit in a frequency domain, a space domain quantization unit to quantize the second domain in a space domain, and an entropy encoder to perform an entropy encoding using outputs of the quantization unit and the space domain quantization unit.