Abstract:
A device with reduced gate resistance includes a gate structure having a first conductive portion and a second conductive portion formed in electrical contact with the first conductive portion and extending laterally beyond the first conductive portion. The gate structure is embedded in a dielectric material and has a gate dielectric on the first conductive portion. A channel layer is provided over the first conductive portion. Source and drain electrodes are formed on opposite end portions of a channel region of the channel layer. Methods for forming a device with reduced gate resistance are also provided.
Abstract:
A field effect transistor device includes a substrate, a silicon germanium (SiGe) layer disposed on the substrate, gate dielectric layer lining a surface of a cavity defined by the substrate and the silicon germanium layer, a metallic gate material on the gate dielectric layer, the metallic gate material filling the cavity, a source region, and a drain region.
Abstract:
Multiple types of gate stacks are formed on a doped semiconductor well. A high dielectric constant (high-k) gate dielectric is formed on the doped semiconductor well. A metal gate layer is formed in one device area, while the high-k gate dielectric is exposed in other device areas. Threshold voltage adjustment oxide layers having different thicknesses are formed in the other device areas. A conductive gate material layer is then formed over the threshold voltage adjustment oxide layers. One type of field effect transistors includes a gate dielectric including a high-k gate dielectric portion. Other types of field effect transistors include a gate dielectric including a high-k gate dielectric portion and a first threshold voltage adjustment oxide portions having different thicknesses. Field effect transistors having different threshold voltages are provided by employing different gate dielectric stacks and doped semiconductor wells having the same dopant concentration.
Abstract:
Multiple types of gate stacks are formed on a doped semiconductor well. A high dielectric constant (high-k) gate dielectric is formed on the doped semiconductor well. A metal gate layer is formed in one device area, while the high-k gate dielectric is exposed in other device areas. Threshold voltage adjustment oxide layers having different thicknesses are formed in the other device areas. A conductive gate material layer is then formed over the threshold voltage adjustment oxide layers. One type of field effect transistors includes a gate dielectric including a high-k gate dielectric portion. Other types of field effect transistors include a gate dielectric including a high-k gate dielectric portion and a first threshold voltage adjustment oxide portions having different thicknesses. Field effect transistors having different threshold voltages are provided by employing different gate dielectric stacks and doped semiconductor wells having the same dopant concentration.
Abstract:
The present invention provides a biochip detection device and a detection method thereof. The detection device includes a detection circuit and a biochip containing a plurality of sensor modules. Each sensor modules includes a plurality of giant magnetoresistive biosensors. The detection circuit is arranged to have an end of each biosensor and an end of each of reference sensors respectively connected to first and second voltage sources, whereby current variation induced in each biosensor can be added together. The detection method includes the steps of providing the above described biochip; carrying out surface functionalization on the biosensors; spotting surfaces of the biosensors with probe molecules corresponding to target molecules to complete molecule immobilization; applying a purified sample to the biochip so that target molecules existing in the sample bind to the probe molecules on the surfaces of the biosensors; applying detecting molecules that are combined with magnetic nano-particles to the biochip in such a way that the detecting molecules are complementary to and thus bound to the target molecules; and using the above mentioned detection circuit to supply an output of a detection current of the biosensors so that observation of variation thereof is made to determine existence of the target molecules.
Abstract:
Methods for quantitatively determining a binding kinetic parameter of a molecular binding interaction are provided. Aspects of embodiments of the methods include: producing a magnetic sensor device including a magnetic sensor in contact with an assay mixture including a magnetically labeled molecule to produce a detectable molecular binding interaction; obtaining a real-time signal from the magnetic sensor; and quantitatively determining a binding kinetics parameter of the molecular binding interaction from the real-time signal. Also provided are systems and kits configured for use in the methods.
Abstract:
Field Effect Transistors (FETs), Integrated Circuit (IC) chips including the FETs, and a method of forming the FETs and IC. FET locations define FET pedestals on a layered semiconductor wafer that may include a III-V semiconductor surface layer, e.g., Gallium Arsenide (GaAs), and a buried layer, e.g., Aluminum Arsenide (AlAs). A dielectric material, e.g., Aluminum Oxide (AlO), surrounds pedestals at least in FET source/drain regions. A conductive cap caps channel sidewalls at opposite channel ends. III-V on insulator (IIIVOI) devices form wherever the dielectric material layer is thicker than half the device length. Source/drain contacts are formed to the caps and terminate in/above the dielectric material in the buried layer.
Abstract:
Self-aligned carbon nanostructure field effect transistor structures are provided, which are formed using selective dielectric deposition techniques. For example, a transistor device includes an insulating substrate and a gate electrode embedded in the insulating substrate. A dielectric deposition-prohibiting layer is formed on a surface of the insulating substrate surrounding the gate electrode. A gate dielectric is selectively formed on the gate electrode. A channel structure (such as a carbon nanostructure) is disposed on the gate dielectric A passivation layer is selectively formed on the gate dielectric. Source and drain contacts are formed on opposing sides of the passivation layer in contact with the channel structure. The dielectric deposition-prohibiting layer prevents deposition of dielectric material on a surface of the insulating layer surrounding the gate electrode when selectively forming the gate dielectric and passivation layer.
Abstract:
In one aspect of the present invention, a field effect transistor (FET) device includes a first FET including a dielectric layer disposed on a substrate, a first portion of a first metal layer disposed on the dielectric layer, and a second metal layer disposed on the first metal layer, a second FET including a second portion of the first metal layer disposed on the dielectric layer, and a boundary region separating the first FET from the second FET.
Abstract:
Self-aligned carbon nanostructure field effect transistor structures are provided, which are foamed using selective dielectric deposition techniques. For example, a transistor device includes an insulating substrate and a gate electrode embedded in the insulating substrate. A dielectric deposition-prohibiting layer is formed on a surface of the insulating substrate surrounding the gate electrode. A gate dielectric is selectively formed on the gate electrode. A channel structure (such as a carbon nanostructure) is disposed on the gate dielectric A passivation layer is selectively formed on the gate dielectric. Source and drain contacts are formed on opposing sides of the passivation layer in contact with the channel structure. The dielectric deposition-prohibiting layer prevents deposition of dielectric material on a surface of the insulating layer surrounding the gate electrode when selectively forming the gate dielectric and passivation layer.