摘要:
A method of forming a fuse for use in an integrated circuit using an amorphous carbon mask includes providing a mask material layer comprising amorphous carbon over a conductive layer. The mask material layer is doped with nitrogen, and an anti-reflective coating (ARC) feature is formed over the mask layer. A portion of the mask material layer is removed according to the ARC feature to form a mask, and the ARC feature is removed to form a warped mask. The conductive layer is patterned according to the warped mask, the warped mask is removed, and a silicide layer is provided over the patterned conductive layer.
摘要:
A method of forming an etch mask includes patterning a top surface of a photoresist layer, carbonizing the patterned top surface of the photoresist layer and selectively removing portions of the photoresist layer. Portions of the photoresist layer under the carbonized areas remain. A substrate or a layer above substrate can be etched or processed in accordance with the mask formed from the photoresist layer.
摘要:
A method of forming a conductor pattern on a base with uneven topography includes placing conductor material on the base, placing a hard mask material on the conductor material, planarizing an exposed surface of the hard mask material, and placing a layer of resist on the hard mask material. The resist is patterned and the patterned resist is used in selectively etching the hard mask material, with the hard mask material used in selectively etching the underlying conductor material. By planarizing the hard mask material prior to placing a layer of resist thereupon, uniformity of the resist coating is enhanced and depth of focus problems in exposing the resist are reduced.
摘要:
An insulated trench isolation structure with large and small trenches of differing widths is formed in a semiconductor substrate with improved planarity using a simplified reverse source/drain planarization mask. Embodiments include forming large trenches and refilling them with an insulating material which also covers the substrate surface, masking the areas above the large trenches, etching to remove substantially all of the insulating material on the substrate surface and polishing to planarize the insulating material above the large trenches. Small trenches and peripheral trenches surrounding the large trenches are then formed, refilled with insulating material, and planarized. Since the large trenches are formed prior to and separately from the small trenches, etching can be carried out after the formation of a relatively simple planarization mask over only the large trenches, and not the small trenches. The use of a planarization mask with relatively few features having a relatively large geometry avoids the need to create and implement a complex and critical mask, thereby reducing manufacturing costs and increasing production throughput. Furthermore, because the large and small trenches are not polished at the same time, overpolishing is avoided, thereby improving planarity and, hence, the accuracy of subsequent photolithographic processing.
摘要:
In one embodiment, the present invention relates to a method of forming a metal line, involving the steps of providing a semiconductor substrate comprising a metal layer, an oxide layer over the metal layer, and a silicon oxynitride layer over the oxide layer; depositing an ultra-thin photoresist over the silicon oxynitride layer, the ultra-thin photoresist having a thickness less than about 2,000 Å; irradiating the ultra-thin photoresist with electromagnetic radiation having a wavelength of about 250 nm or less; developing the ultra-thin photoresist exposing a portion of the silicon oxynitride layer; etching the exposed portion of the silicon oxynitride layer exposing a portion of the oxide layer; etching the exposed portion of the oxide layer exposing a portion of the metal layer; and etching the exposed portion of the metal layer thereby forming the metal line.
摘要:
In one embodiment, the present invention relates to a method of making a sub-lithographic structure involving the steps of providing a nitrogen rich film over a portion of a substrate; depositing a photoresist over the nitrogen rich film and the substrate, wherein the photoresist and the nitrogen rich film interact and form a thin desensitized resist layer around an interface between the photoresist and the nitrogen rich film; exposing the photoresist to radiation; developing the photoresist exposing the thin desensitized resist layer; directionally etching a portion of the thin desensitized resist layer; and removing the nitrogen rich film leaving the sub-lithographic structure on the substrate.
摘要:
A method of forming a via structure is provided. In the method, a dielectric layer is formed on an anti-reflective coating (ARC) layer covering a first metal layer; and a transition metal layer is formed on the dielectric layer. An ultra-thin photoresist layer is formed on the transition metal layer, and the ultra-thin photoresist layer is patterned with short wavelength radiation to define a pattern for a via. The patterned ultra-thin photoresist layer is used as a mask during a first etch step to transfer the via pattern to the transition metal layer. The first etch step includes an etch chemistry that is selective to the transition metal layer over the ultra-thin photoresist layer and the dielectric layer. The transition metal layer is employed as a hard mask during a second etch step to form a contact hole corresponding to the via pattern by etching portions of the dielectric layer.
摘要:
A lithographic process for fabricating sub-micron features is provided. A silicon containing ultra-thin photoresist is formed on an underlayer surface to be etched. The ultra-thin photoresist layer is patterned with short wavelength radiation to define a pattern. The ultra-thin photoresist is oxidized so as to convert the silicon therein to silicon dioxide. The oxidized ultra-thin photoresist layer is used as a hard mask during an etch step to transfer the pattern to the underlayer. The etch step includes an etch chemistry that is highly selective to the underlayer over the oxidized ultra-thin photoresist layer.
摘要:
A method of forming a via structure is provided. In the method, a dielectric layer is formed on an anti-reflective coating (ARC) layer covering a first metal layer; and a nitride layer is formed on the dielectric layer. An ultra-thin photoresist layer is formed on the nitride layer, and the ultra-thin photoresist layer is patterned with short wavelength radiation to define a pattern for a via. The patterned ultra-thin photoresist layer is used as a mask during a first etch step to transfer the via pattern to the nitride layer. The first etch step includes an etch chemistry that is selective to the nitride layer over the ultra-thin photoresist layer and the dielectric layer. The nitride layer is employed as a hard mask during a second etch step to form a contact hole corresponding to the via pattern by etching portions of the dielectric layer.
摘要:
An insulated trench isolation structure with large and small trenches of differing widths is formed in a semiconductor substrate using a simplified reverse source/drain planarization mask. Embodiments include forming trenches and refilling them with an insulating material which also covers a main surface of the substrate, polishing to remove an upper portion of the insulating material and to planarize the insulating material above the small trenches, furnace annealing to densify and strengthen the remaining insulating material, masking the insulating material above the large trenches, isotropically etching the insulating material, and polishing to planarize the insulating material. Since the insulating material is partially planarized and strengthened prior to etching, etching can be carried out after the formation of a relatively simple planarization mask over only the large trenches, and not the small trenches. Because the features of the planarization mask are relatively few and have a relatively large geometry, the present invention avoids the need to create and implement a critical mask, enabling production costs to be reduced and manufacturing throughput to be increased.