摘要:
The separation of a target gas selected from a high pressure gas mixture containing said target gas as well as a product gas using a swing adsorption process unit. A turboexpander is used upstream of the swing adsorber to reduce the pressure of the high pressure gas mixture. A compressor is optionally used downstream of the swing adsorber to increase the pressure of the target gas-containing stream for injecting into a subterranean formation.
摘要:
The separation of a target gas from a mixture of gases using a thermal swing adsorption process wherein a thermal wave is used, primarily in the desorption step. The process of this invention enables one to separately remove multiple contaminants from a treated gaseous stream.
摘要:
The adsorption of CO2 from flue gas streams using temperature swing adsorption. Adsorbent contactors are used in the temperature swing adsorption unit that contain a plurality of substantially parallel channels comprised of or coated with an adsorbent material that is selective for adsorbing CO2 from flue gas.
摘要:
The removal of one or more of the gases CO2, N2 and H2S from gas mixtures containing at least one of said gases with use of an 8-ring zeolite having a Si:Al ratio from about 1:1 to about 1000:1. The preferred gas mixture is a natural gas feedstream and the preferred 8-ring zeolite is DDR.
摘要翻译:从包含至少一种所述气体的气体混合物中除去一种或多种气体CO 2 N 2 N 2和H 2 S, 使用Si:Al比为约1:1至约1000:1的8-环沸石。 优选的气体混合物是天然气进料流,优选的8-环沸石是DDR。
摘要:
A process for the separation of one or more heavy hydrocarbon gases from a gas mixture containing heavy hydrocarbon gas components and methane. The process is conducted in swing adsorption apparatus containing adsorbent contactor having a plurality of flow channels and wherein 20 volume percent or less of the open pore volume of the contactors, is in the mesopore and macropore range.
摘要:
A novel injector/reactor apparatus and an efficient process for the partial oxidation of light hydrocarbon gases, such as methane, to convert such gases to useful synthesis gas for recovery and/or subsequent hydrocarbon synthesis. Sources of a light hydrocarbon gas, such as methane, and oxygen or an oxygen-containing gas are preheated and pressurized and injected through an injector means at high velocity into admixture with each other in the desired relative proportions, at a plurality of mixing nozzles which are open to the catalytic partial oxidation reaction zone and are uniformly-spaced over the face of the injector means, to form a reactant gaseous premix having a pressure drop equal to at least about 3% of the lowest upstream pressure of either of said gases. The gaseous premix is injected in a time period which is less than its autoignition time, preferably less than 9 milliseconds, at a velocity between about 25 to 1000 feet/second, into a catalytic partial oxidation zone so that the gaseous premix reacts in the presence of the fixed catalyst to reduce the amounts of CO2, H2O and heat produced by the partial oxidation reaction, to form a useful syngas which is cooled and recovered.
摘要:
The invention is a process for hydroformylating multicomponent syngas feed streams containing CO, H.sub.2, C.sub.2 to C.sub.5 olefins and mixtures thereof and C.sub.2 to C.sub.5 alkynes and mixtures thereof by contacting the multicomponent syngas feed stream with a solution of an oil soluble rhodium complex catalyst produced by complexing in solution a low valence Rh and an oil soluble triorganophoshorous compound wherein the catalyst has a P/Rh ratio of at least 30, a concentration of Rh in solution from about 1 to about 1000 ppm by weight, a total concentration of coordinatively active P of at least about 0.01 mol/l, and a ratio of [P]/p.sub.co of at least 0.1 mmol/l/kPa, wherein [P] is the total concentration of coordinatively active phosphorous in the solution, and p.sub.co is the partial pressure of CO, to produce the corresponding C.sub.3 to C.sub.6 aldehydes. The process has utility for the hydroformylation of streams that contain olefins and alkynes.
摘要:
A method for making a layered metal chalcogenide catalyst wherein the catalyst has a crystalline structure with increased edge sites produced by lithographic methods.
摘要:
A method is described for producing an electronically passivated stable surface on silicon wafers. The passivation technique consists of first fluorinating the surface of a crystalline silicon wafer under inert atmospheric conditions. Such a treatment may consist of either a vapor phase or liquid phase application of HF at room temperature. The surface fluorinated wafer is then maintained in an inert atmosphere and a thin coating of an organic solid is applied to the wafer which does not disturb the underlying passivated silicon surface. The wafer may then be further processed into a variety of different devices.
摘要:
Identical half-section shells of microscopic size, such as hemispherical shells from which spherical laser fusion targets can be made are capable of mass production by micro fabrication molding techniques. A body (preferably a hollow glass microsphere which is called a glass microballoon) provides a pattern for the hemispherical shells, and is used to produce an original mold section. One or more master molds are formed from this original mold section by replication. Many identical replica molds are made by casting soluble material onto the master mold and removing them therefrom. The replica molds are coated with one or more layers which will form the hemispherical shell wall. The material coating the flat background around the hemispherical cavity is referred to as the flange and is removed to form free standing shells. In order to remove the flange material, the coated replica molds are overcoated with a soluble material which is etched away to the level of the flange. The remaining soluble material acts as a mask for the shell material when the flange material is etched away. The replica mold and overcoating body remain as a protective mask and are dissolved away to release the identical shell sections. These sections can be assembled to provide closed shells. Overlapping lips can be formed during flange removal so as to facilitate the assembly of the sections into the closed shells.