Abstract:
A method interactively displays panoramic images of a scene. The method includes measuring 3D coordinates with a 3D measuring instrument at a first position and a second position. The 3D coordinates are registering into a common frame of reference. Within the scene, a trajectory includes a plurality of trajectory points. Along the trajectory, 2D images are generated from the commonly registered 3D coordinates. A trajectory display mode sequentially displays a collection of 2D images at the trajectory points. A rotational display mode allows a user to select a desired view direction at a given trajectory point. The user selects the trajectory display mode or the rotational display mode and sees the result shown on the display device.
Abstract:
A method for scanning and obtaining three-dimensional (3D) coordinates is provided. The method includes providing a 3D measuring device having a projector, a first camera and a second camera. The method records images of a light pattern emitted by the projector onto an object. The 3D measuring device is moved from a first position and a second position along a second path. A gesture and a corresponding control function are determined based at least in part on the first position and the second position.
Abstract:
A method for scanning and obtaining three-dimensional (3D) coordinates is provided. The method includes providing a 3D measuring device having a projector, a first camera and a second camera. The method records images of a light pattern emitted by the projector onto an object. A deviation in a measured parameter from an expected parameter is determined. The calibration of the 3D measuring device may be changed when the deviation is outside of a predetermined threshold.
Abstract:
A method for optically scanning, measuring and displaying a point cloud is provided. The method includes emitting, by a laser scanner, an emission light beam and receiving a reflection light beam that is reflected from an object. A control device determines for measurement points projected on a plane corresponding to a screen, wherein at least some measurement points are displayed on a display device. One or more pixels are gap filled to generate a visual appearance of a surface on the display device. Wherein the gap filling includes a first horizontal search in a first direction of a first measured point of the measurement points followed by a second horizontal search in a second direction of the first measured point. The gap filling further includes a first vertical search in a third direction of the measured point, followed by a second vertical search in a fourth direction.
Abstract:
A method for optically scanning and measuring an environment by means of a hand-held scanner for producing 3D-scans is provided. The method including providing a hand-held scanner having at least one projector and at least one camera. At least one pattern is projected onto an object in the environment with the at least one projector. At least one camera images of the object which has the pattern projected thereon is recorded with a plurality of frames. Three-dimensional coordinates of points on the surface of the object are determined from each frame in the plurality of frames. A ring closure is determined in the plurality of frames. The determination comprising the steps of forming a frustum for each frame, comparing a last frustum of the last frame with a plurality of frusta to form an intersection, and selecting a frustum having the largest intersection.
Abstract:
A method is given for finding a reference correction value of an index mark of an angular encoder. The angular encoder includes a first read head, a second read head, and a patterned element having incremental marks and an index mark. In a first instance and in a second instance, the patterned element is rotated relative to the read heads to obtain incremental readings from the first read head and the second read head and an index mark from the first read head. Based on these readings, a processor determines, in the first instance, a first reference position and, in the second instance, a second reference position. The processor determines the reference correction value based at least in part on the first reference position and the second reference position.
Abstract:
A method for optically scanning and measuring a scene by a three-dimensional (3D) measurement device in which multiple scans are generated to then be registered in a joint coordinate system of the scene. At first at least one cluster is generated from at least one scan, further scans are registered for test purposes in the coordinate system of the cluster, if specified quality criteria are fulfilled and the generated clusters are then joined, for which purpose clusters are selected, registered for test purposes and registering is confirmed if appropriate, wherein the clusters to be joined are visualized with an optional possibility for the user to intervene, for supporting the selection of clusters.
Abstract:
A method of balancing colors of three-dimensional (3D) points measured by a scanner from a first location and a second location. The scanner measures 3D coordinates and colors of first object points from a first location and second object points from a second location. The scene is divided into local neighborhoods, each containing at least a first object point and a second object point. An adapted second color is determined for each second object point based at least in part on the colors of first object points in the local neighborhood.
Abstract:
A method interactively displays panoramic images of a scene. The method includes measuring 3D coordinates of the scene with a 3D measuring instrument at a first position and a second position. The 3D coordinates are registering into a common frame of reference. Within the scene, a trajectory includes a plurality of trajectory points. Along the trajectory, 2D images are generated from the commonly registered 3D coordinates. A user interface provides a trajectory display mode that sequentially displays a collection of 2D images at the trajectory points. The user interface also provides a rotational display mode that allows a user to select a desired view direction at a given trajectory point. The user selects the trajectory display mode or the rotational display mode and sees the result shown on the display device.