摘要:
A method of forming a semiconductor structure comprises providing a substrate comprising a layer of a first material. A protection layer is formed over the layer of first material. At least one opening is formed in the layer of first material and the protection layer. A layer of a second material is formed over the layer of first material and the protection layer to fill the opening with the second material. A planarization process is performed to remove portions of the layer of second material outside the opening. At least a portion of the protection layer is not removed during the planarization process. An etching process is performed to remove the portions of the protection layer which were not removed during the planarization process.
摘要:
During the formation of an underfill material provided between a carrier substrate and a semiconductor chip, a common motion of particles contained in the underfill material is initiated towards the semiconductor chip, thereby adjusting the thermal and mechanical behavior of the underfill material. For instance, by applying an external force, such as gravity, a depletion zone with respect to the filler particles may be created in the vicinity of the carrier substrate, while a high particle concentration may be obtained in the vicinity of the semiconductor chip. Hence, thermal and mechanical stress redistribution by means of the underfill material may be enhanced.
摘要:
The introduction of dielectric material of enhanced mechanical stability, such as silicon dioxide or fluorine-doped silicon dioxide, into the via level of a low-k interconnect structure provides an increased overall mechanical stability, especially during the packaging of the device. Consequently, cracking and delamination, as frequently observed in high end low-k interconnect structures, may significantly be reduced, even if organic package substrates are used.
摘要:
In sophisticated semiconductor devices, densely packed metal line layers may be formed on the basis of an ultra low-k dielectric material, wherein corresponding modified portions of increased dielectric constant may be removed in the presence of the metal lines, for instance, by means of a selective wet chemical etch process. Consequently, the metal lines may be provided with desired critical dimensions without having to take into consideration a change of the critical dimensions upon removing the modified material portion, as is the case in conventional strategies.
摘要:
During the formation of complex metallization systems, a conductive cap layer may be formed on a copper-containing metal region in order to enhance the electromigration behavior without negatively affecting the overall conductivity. At the same time, a thermo chemical treatment may be performed to provide superior surface conditions of the sensitive dielectric material and also to suppress carbon depletion, which may conventionally result in a significant variability of material characteristics of sensitive ULK materials.
摘要:
By providing a protection layer at the bevel region, the deposition of polymer materials during the patterning process of complex metallization structures may be reduced. Additionally or alternatively, a surface topography may be provided, for instance in the form of respective recesses, in order to enhance the degree of adhesion of any materials deposited in the bevel region during the manufacturing of complex metallization structures. Advantageously, the provision of the protection layer providing the reduced polymer deposition may be combined with the modified surface topography.
摘要:
In a complex metallization system, the probability of dielectric breakdown may be reduced by vertically separating a critical area of high electric field strength and an area of reduced dielectric strength of the interlayer dielectric material. For this purpose, the interlayer dielectric material may be recessed after forming the metal regions and/or the metal regions may be increased in height and the corresponding recess may be refilled with an appropriate dielectric material.
摘要:
During the formation of complex metallization systems, a conductive cap layer may be formed on a copper-containing metal region in order to enhance the electromigration behavior without negatively affecting the overall conductivity. At the same time, a thermo chemical treatment may be performed to provide superior surface conditions of the sensitive dielectric material and also to suppress carbon depletion, which may conventionally result in a significant variability of material characteristics of sensitive ULK materials.
摘要:
A method of forming a semiconductor structure comprises providing a substrate comprising a layer of a first material. A protection layer is formed over the layer of first material. At least one opening is formed in the layer of first material and the protection layer. A layer of a second material is formed over the layer of first material and the protection layer to fill the opening with the second material. A planarization process is performed to remove portions of the layer of second material outside the opening. At least a portion of the protection layer is not removed during the planarization process. An etching process is performed to remove the portions of the protection layer which were not removed during the planarization process.
摘要:
Prior to performing a CMP process for planarizing a metallization level of an advanced semiconductor device, an appropriate cap layer may be formed in order to delay the exposure of metal areas of reduced height level to the highly chemically reactive slurry material. Consequently, metal of increased height level may be polished with a high removal rate due to the mechanical and the chemical action of the slurry material, while the chemical interaction with the slurry material may be substantially avoided in areas of reduced height level. Therefore, a high process uniformity may be achieved even for pronounced initial surface topographies and slurry materials having a component of high chemical reactivity.