Abstract:
A method for providing an electrical connection for conductive ink includes direct writing a bus bar onto areas of a desired electrical connection of the conductive ink. The conductive ink is screen printed onto a dielectric film to create a conductive circuit. An aircraft heated floor panel includes at least one floor panel of an aircraft. The one floor panel includes a conductive circuit having a conductive ink including a bus bar directly written onto areas of a desired electrical connection of the conductive ink. The conductive ink is screen printed onto a dielectric film to create a conductive circuit.
Abstract:
An ice protection system for an aircraft component includes a plurality of heaters. The aircraft component has at least two section and a junction area. At least one of the heaters is an H-shape carbon allotrope heater designed to apply heat to the junction area and prevent ice accumulation in the junction area.
Abstract:
A conformable tank includes a body with a plurality of walls defining a cavity in the body, and an internal support structure connected to an internal surface of one of the plurality of walls and protruding into the cavity of the body. The plurality of walls are formed of a first 3D woven composite material. The internal support structure is formed of a second composite material.
Abstract:
A conductive ink may comprise a high temperature thermoplastic polyurethane (TPU) and a plurality of conductive particles disposed in the high temperature TPU. The plurality of conductive particles may comprise between 60% and 95% of the conductive ink by weight. The high temperature TPU may include a melting point between 120° C. and 200° C. The conductive ink may be used for external heated composite structures, such as rotor blades, fixed wings, faring, engine lip electrothermal ice protection, or the like. The conductive ink may have enhanced mechanical fatigue resistance.
Abstract:
An apparatus may comprise: a metal pipe portion extending from a first end to a first transition end and defining a first radially outer surface and a first radially inner surface, the first transition end comprising a first tooth element and a second tooth element disposed circumferentially adjacent to the first tooth element; and a polymeric pipe portion having a second transition end and defining a second radially outer surface and a second radially inner surface, the second transition end having a complimentary shape to the first transition end, the second transition end coupled to the first transition end.
Abstract:
A method of making an adhesive for an ice protection assembly includes mixing ferrous nanoparticles into the adhesive. Removal of the adhesive for ice protection assembly inspection or repair includes heating the ferrous nanoparticles in the adhesive to soften the adhesive and allow for easy removal or repositioning of the ice protection assembly.
Abstract:
A method of manufacturing a cured vessel is disclosed herein. The method comprises wrapping a first bladder in a first composite laminate, wrapping a second bladder in a second composite laminate. The method further comprises joining the first composite laminate and the second composite laminate by wrapping them both in a third composite laminate to form an un-cured vessel. The un-cured vessel is cured by heating the uncured vessel and pressurizing the bladder while the uncured vessel is in a vessel mold.
Abstract:
An aircraft heated floor panel includes a first face sheet, a second face sheet opposite the first face sheet, and core with an electrically conductive core portion. The electrically conductive core portion supports the first face sheet and the second face sheet, and is electrically insulated from the external environment to receive electrical power, resistively generate heat, and communicate heat to the first face sheet.
Abstract:
A method of manufacturing a metal component with an anti-microbial molecular layer may comprise: disposing the metal component in a piranha solution; washing the metal component; and grafting a surface of the metal component with a Si-Quat or hybrid Si-Quat molecular layer.
Abstract:
A heated floor panel may comprise a base assembly and a heating element located on a first surface of the base assembly. A panel skin may be located over the heating element and the first surface of the base assembly. The panel skin may extend from the first surface of the base assembly to a second surface of the base assembly opposite the first surface of the base assembly.