Abstract:
A system and method of aligning with a reference target includes a computer-assisted device. The computer-assisted device includes a link, one or more first joints coupled proximally to the link, an articulated arm comprising one or more second joints coupled distally to the link, the articulated arm configured to couple to an instrument, and a control unit. The control unit is configured to position or orient the link, using the one or more first joints, based on at least one reference of the instrument selected from the group consisting of a reference point associated with the instrument and a reference orientation of the instrument. The control unit is further configured to maintain, while positioning or orienting the link and by using the one or more second joints, a position or an orientation of the instrument relative to a workspace in accordance with the at least one reference of the instrument.
Abstract:
Devices, systems, and methods for providing commanded movement of an end effector of a manipulator while providing a desired movement of one or more joints of the manipulator. Methods include calculating weighted joint velocities using a weighting matrix within the joint space to anisotropically emphasize joint movement within a null-space to provide the desired movement of a first set of joints. Methods may include calculating joint velocities that achieve the desired end effector movement using a pseudo-inverse solution and adjusting the calculated joint velocities using a potential function gradient within the joint space corresponding to the desired movement of the first set of joints. Methods may include use of a weighted pseudo-inverse solution and also an augmented Jacobian solution. One or more auxiliary movements may also be provided using joint velocities calculated from the pseudo-inverse solution. Various configurations for systems utilizing such methods are provided herein.
Abstract:
Devices, systems, and methods for providing commanded movement of an end effector of a manipulator while providing a desired movement of one or more joints of the manipulator. Methods include calculating weighted joint velocities using a weighting matrix within the joint space to anisotropically emphasize joint movement within a null-space to provide the desired movement of a first set of joints. Methods may include calculating joint velocities that achieve the desired end effector movement using a pseudo-inverse solution and adjusting the calculated joint velocities using a potential function gradient within the joint space corresponding to the desired movement of the first set of joints. Methods may include use of a weighted pseudo-inverse solution and also an augmented Jacobian solution. One or more auxiliary movements may also be provided using joint velocities calculated from the pseudo-inverse solution. Various configurations for systems utilizing such methods are provided herein.
Abstract:
Devices, systems, and methods for providing a desired movement of one or more joints of a manipulator arm having a plurality of joints with redundant degrees of freedom while effecting commanded movement of a distal end effector of the manipulator. Methods include defining a constraint, such as a network of paths, within a joint space defined by the one or more joints and determining a movement of the plurality of joints within a null-space to track the constraints with the one or more joints. Methods may further include calculating a reconfiguration movement of the joints and modifying the constraints to coincide with a reconfigured position of the one or more joints. Various configurations for devices and systems utilizing such methods are provided herein.
Abstract:
Robotic devices, systems, and methods for use in robotic surgery and other robotic applications, and/or medical instrument devices, systems, and methods includes both a reusable processor and a limited-use robotic tool or medical treatment probe. A memory the limited-use component includes machine readable code with data and/or programming instructions to be implemented by the processor. Programming of the processor can be updated by shipping of new data once downloaded by the processor from a component, subsequent components can take advantage of the updated processor without repeated downloading.
Abstract:
A patient side cart for a teleoperated surgical system includes at least one manipulator portion for holding a surgical instrument and a steering interface. The steering interface may include at least one sensor positioned to sense turning, fore, and aft forces exerted by a user to move the cart. The steering interface may further include a coupling mechanism to removably couple the steering interface with the patient side cart. The at least one sensor may be placed in signal communication with a drive control system of the patient side cart when the steering interface is in a coupled state with the patient side cart.
Abstract:
Devices, systems, and methods for providing commanded movement of an end effector of a manipulator while providing a desired movement of one or more joints of the manipulator. Methods include calculating weighted joint velocities using a weighting matrix within the joint space to anisotropically emphasize joint movement within a null-space to provide the desired movement of a first set of joints. Methods may include calculating joint velocities that achieve the desired end effector movement using a pseudo-inverse solution and adjusting the calculated joint velocities using a potential function gradient within the joint space corresponding to the desired movement of the first set of joints. Methods may include use of a weighted pseudo-inverse solution and also an augmented Jacobian solution. One or more auxiliary movements may also be provided using joint velocities calculated from the pseudo-inverse solution. Various configurations for systems utilizing such methods are provided herein.
Abstract:
Robotic and/or surgical devices, systems, and methods include kinematic linkage structures and associated control systems configured to facilitate preparation of the system for use. One or more kinematic linkage sub-systems may include joints that are actively driven, passive, or a mix of both. A set-up mode employs an intuitive user interface in which one or more joints are initially held static by a brake or joint drive system. The user may articulate the joint(s) by manually pushing against the linkage with a force, torque, or the like that exceeds a manual articulation threshold. Articulation of the moving joints is facilitated by modifying the signals transmitted to the brake or drive system. The system may sense completion of the reconfiguration from a velocity of the joint(s) falling below a threshold, optionally for a desired dwell time. The system may provide a detent-like manual articulation that is not limited to mechanically pre-defined detent joint configurations. Embodiments of the invention provide, and can be particularly well-suited for manual movement of a platform supporting a plurality of surgical manipulators in a robotic surgical system or the like without having to add additional input devices.
Abstract:
A computer-assisted device includes an articulated arm configured to support an end effector and a control unit. When coupled to the articulated arm and a table, the control unit is configured to detect movement of the articulated arm caused by movement of the table, determine a movement of the table based on motion data received from the table, and drive one or more first joints of the articulated arm based on the movement of the articulated arm and the determined movement of the table.
Abstract:
A computer-assisted device includes a plurality of articulated arms and a control unit. Each articulated arm has a plurality of brakes. The control unit is configured to determine a plurality of timing windows based on a time period for brake release and a number of articulated arms comprising the plurality of articulated arms. The plurality of timing windows include a timing window for each articulated arm of the plurality of articulated arms. The control unit is further configured to determine, for each articulated arm of the plurality of articulated arms, an order for releasing brakes of the plurality of brakes of that articulated arm. The control unit is further configured to cause release of the brakes of the plurality of brakes of each of the plurality of articulated arms according to the determined order and the plurality of timing windows.