Ni(OH)2 NANOPOROUS FILMS AS ELECTRODES
    93.
    发明申请
    Ni(OH)2 NANOPOROUS FILMS AS ELECTRODES 审中-公开
    Ni(OH)2纳米膜作为电极

    公开(公告)号:US20160379764A1

    公开(公告)日:2016-12-29

    申请号:US15193529

    申请日:2016-06-27

    摘要: The present disclosure pertains to electrodes that include a nickel-based material and at least one porous region with a plurality of nickel hydroxide moieties on a surface of the nickel-based material. The nickel-based material may be a nickel foil in the form of a film. The porous region of the electrode may be directly associated with the surface of the nickel-based material. The nickel hydroxide moieties may be in crystalline form and embedded with the porous region. The electrodes of the present disclosure may be a component of an energy storage device, such as a capacitor. Additional embodiments of the present disclosure pertain to methods of fabricating the electrodes by anodizing a nickel-based material to form at least one porous region on a surface of the nickel-based material; and hydrothermally treating the porous region to form nickel hydroxide moieties associated with the porous region.

    摘要翻译: 本公开涉及包括镍基材料的电极和在镍基材料的表面上具有多个氢氧化镍部分的至少一个多孔区域。 镍基材料可以是膜形式的镍箔。 电极的多孔区域可以直接与镍基材料的表面相关联。 氢氧化镍部分可以是结晶形式并且嵌入多孔区域。 本公开的电极可以是诸如电容器的能量存储装置的部件。 本公开的另外的实施例涉及通过阳极氧化镍基材料以在镍基材料的表面上形成至少一个多孔区域来制造电极的方法; 并水热处理多孔区以形成与多孔区相关联的氢氧化镍部分。

    LOW COST CARBON MATERIALS FOR THE CAPTURE OF CO2 AND H2S FROM VARIOUS ENVIRONMENTS
    97.
    发明申请
    LOW COST CARBON MATERIALS FOR THE CAPTURE OF CO2 AND H2S FROM VARIOUS ENVIRONMENTS 审中-公开
    用于从各种环境中捕获二氧化碳和硫化氢的低成本碳材料

    公开(公告)号:US20150111018A1

    公开(公告)日:2015-04-23

    申请号:US14458802

    申请日:2014-08-13

    IPC分类号: B01D53/04 B01J20/30 B01J20/20

    摘要: In some embodiments, the present disclosure pertains to methods of capturing a gas from an environment by associating the environment with a porous carbon material that includes, without limitation, protein-derived porous carbon materials, carbohydrate-derived porous carbon materials, cotton-derived porous carbon materials, fat-derived porous carbon materials, waste-derived porous carbon materials, asphalt-derived porous carbon materials, coal-derived porous carbon materials, coke-derived porous carbon materials, asphaltene-derived porous carbon materials, oil product-derived porous carbon materials, bitumen-derived porous carbon materials, tar-derived porous carbon materials, pitch-derived porous carbon materials, anthracite-derived porous carbon materials, melamine-derived porous carbon materials, and combinations thereof. In some embodiments, the associating results in sorption of gas components (e.g., CO2, H2S, and combinations thereof) to the porous carbon material. Additional embodiments of the present disclosure pertain to the porous carbon materials and methods of making the same.

    摘要翻译: 在一些实施方案中,本公开涉及通过将环境与多孔碳材料缔合而捕获气体的方法,所述多孔碳材料包括但不限于蛋白质衍生的多孔碳材料,来自碳水化合物的多孔碳材料,来自棉花的多孔碳材料 碳材料,脂肪衍生的多孔碳材料,废物衍生的多孔碳材料,沥青衍生的多孔碳材料,煤衍生的多孔碳材料,焦炭衍生的多孔碳材料,沥青质衍生的多孔碳材料,油产品多孔碳材料 碳材料,沥青衍生的多孔碳材料,焦油衍生的多孔碳材料,沥青衍生的多孔碳材料,无烟煤衍生的多孔碳材料,三聚氰胺衍生的多孔碳材料及其组合。 在一些实施方案中,缔合导致气体组分(例如,CO 2,H 2 S及其组合)吸附至多孔碳材料。 本公开的另外的实施方案涉及多孔碳材料及其制备方法。

    SYNTHESIS OF MAGNETIC CARBON NANORIBBONS AND MAGNETIC FUNCTIONALIZED CARBON NANORIBBONS
    98.
    发明申请
    SYNTHESIS OF MAGNETIC CARBON NANORIBBONS AND MAGNETIC FUNCTIONALIZED CARBON NANORIBBONS 有权
    磁性纳米颗粒和磁性功能碳纳米管的合成

    公开(公告)号:US20150108391A1

    公开(公告)日:2015-04-23

    申请号:US14374591

    申请日:2013-01-28

    IPC分类号: H01F1/01

    摘要: Various embodiments of the present disclosure pertain to methods of making magnetic carbon nanoribbons. Such methods generally include: (1) forming carbon nanoribbons by splitting carbon nanomaterials; and (2) associating graphene nanoribbons with magnetic materials, precursors of magnetic materials, or combinations thereof. Further embodiments of the present disclosure also include a step of reducing the precursors of magnetic materials to magnetic materials. In various embodiments, the associating occurs before, during or after the splitting of the carbon nanomaterials. In some embodiments, the methods of the present disclosure further comprise a step of (3) functionalizing the carbon nanoribbons with functionalizing agents. In more specific embodiments, the functionalizing occurs in situ during the splitting of carbon nanomaterials. In further embodiments, the carbon nanoribbons are edge-functionalized. Additional embodiments of the present disclosure pertain to magnetic carbon nanoribbon compositions that were formed in accordance with the methods of the present disclosure.

    摘要翻译: 本公开的各种实施方案涉及制备磁性碳纳米带的方法。 这些方法通常包括:(1)通过分解碳纳米材料形成碳纳米带; 和(2)将石墨烯纳米带与磁性材料,磁性材料的前体或其组合相关联。 本公开的另外的实施方案还包括将磁性材料的前体还原成磁性材料的步骤。 在各种实施方案中,缔合发生在碳纳米材料分裂之前,期间或之后。 在一些实施方案中,本公开的方法还包括(3)用官能化试剂官能化碳纳米带的步骤。 在更具体的实施方案中,官能化在碳纳米材料分裂过程中就地发生。 在另外的实施方案中,碳纳米带是边缘官能化的。 本公开的另外的实施方案涉及根据本公开的方法形成的磁性碳纳米纤维组合物。

    Graphene nanoribbons prepared from carbon nanotubes via alkali metal exposure
    99.
    发明授权
    Graphene nanoribbons prepared from carbon nanotubes via alkali metal exposure 有权
    通过碱金属曝光从碳纳米管制备的石墨烯纳米带

    公开(公告)号:US08992881B2

    公开(公告)日:2015-03-31

    申请号:US13378528

    申请日:2010-06-11

    摘要: In various embodiments, the present disclosure describes processes for preparing functionalized graphene nanoribbons from carbon nanotubes. In general, the processes include exposing a plurality of carbon nanotubes to an alkali metal source in the absence of a solvent and thereafter adding an electrophile to form functionalized graphene nanoribbons. Exposing the carbon nanotubes to an alkali metal source in the absence of a solvent, generally while being heated, results in opening of the carbon nanotubes substantially parallel to their longitudinal axis, which may occur in a spiralwise manner in an embodiment. The graphene nanoribbons of the present disclosure are functionalized on at least their edges and are substantially defect free. As a result, the functionalized graphene nanoribbons described herein display a very high electrical conductivity that is comparable to that of mechanically exfoliated graphene.

    摘要翻译: 在各种实施方案中,本公开描述了从碳纳米管制备官能化石墨烯纳米带的方法。 通常,该方法包括在不存在溶剂的情况下将多个碳纳米管暴露于碱金属源,然后加入亲电体以形成官能化的石墨烯纳米带。 通常在加热的情况下,将碳纳米管暴露于碱金属源,通常在被加热的情况下导致碳纳米管的开口基本上平行于它们的纵向轴线,这在实施例中可以以螺旋方式发生。 本公开的石墨烯纳米带至少在其边缘上被官能化,并且基本上是无缺陷的。 因此,本文所述的功能化石墨烯纳米带显示出与机械剥离的石墨烯相当的非常高的电导率。

    SOLVENT-BASED METHODS FOR PRODUCTION OF GRAPHENE NANORIBBONS
    100.
    发明申请
    SOLVENT-BASED METHODS FOR PRODUCTION OF GRAPHENE NANORIBBONS 有权
    用于生产石墨纳米粒子的溶剂型方法

    公开(公告)号:US20150057417A1

    公开(公告)日:2015-02-26

    申请号:US14345016

    申请日:2012-09-14

    摘要: The present invention provides methods of preparing functionalized graphene nanoribbons. Such methods include: (1) exposing a plurality of carbon nanotubes (CNTs) to an alkali metal source in the presence of an aprotic solvent to open them; and (2) exposing the opened CNTs to an electrophile to form functionalized graphene nanoribbons (GNRs). The methods may also include a step of exposing the opened CNTs to a protic solvent to quench any reactive species on them. Additional methods include preparing unfunctionalized GNRs by: (1) exposing a plurality of CNTs to an alkali metal source in the presence of an aprotic solvent to open them; and (2) exposing the opened CNTs to a protic solvent to form unfunctionalized GNRs.

    摘要翻译: 本发明提供了制备官能化石墨烯纳米带的方法。 这些方法包括:(1)在非质子溶剂的存在下将多个碳纳米管(CNT)暴露于碱金属源以将其打开; 和(2)将开放的CNT暴露于亲电子试剂以形成官能化的石墨烯纳米带(GNR)。 所述方法还可以包括将开放的CNT暴露于质子溶剂以淬灭其上的任何反应性物质的步骤。 另外的方法包括:通过以下步骤制备未官能化的GNR:(1)在非质子溶剂存在下将多个CNT暴露于碱金属源以打开它们; 和(2)将开放的CNT暴露于质子溶剂以形成未官能化的GNR。