摘要:
Embodiments of the present disclosure pertain to an electrode that includes: a porous carbon material; a metal (e.g., Li) associated with the porous carbon material; and a conductive additive (e.g., graphene nanoribbons) associated with the porous carbon material. The metal may be in the form of a non-dendritic or non-mossy coating on a surface of the porous carbon material. The electrodes may also be associated with a substrate, such as a copper foil. The electrodes may be utilized as anodes or cathodes in energy storage devices, such as lithium ion batteries. Additional embodiments pertain to energy storage devices that contain the electrodes of the present disclosure. Further embodiments pertain to methods of making the electrodes by associating porous carbon materials with a conductive additive, a metal, and optionally a substrate. The electrode may then be incorporated as a component of an energy storage device.
摘要:
A nanoporous (NP) memory may include a non-porous layer and a nanoporous layer sandwiched between the bottom and top electrodes. The memory may be free of diodes, selectors, and/or transistors that may be necessary in other memories to mitigate crosstalk. The nanoporous material of the nanoporous layer may be a metal oxide, metal chalcogenide, or a combination thereof. Further, the memory may lack any additional components. Further, the memory may be free from requiring an electroformation process to allow switching between ON/OFF states.
摘要:
The present disclosure pertains to electrodes that include a nickel-based material and at least one porous region with a plurality of nickel hydroxide moieties on a surface of the nickel-based material. The nickel-based material may be a nickel foil in the form of a film. The porous region of the electrode may be directly associated with the surface of the nickel-based material. The nickel hydroxide moieties may be in crystalline form and embedded with the porous region. The electrodes of the present disclosure may be a component of an energy storage device, such as a capacitor. Additional embodiments of the present disclosure pertain to methods of fabricating the electrodes by anodizing a nickel-based material to form at least one porous region on a surface of the nickel-based material; and hydrothermally treating the porous region to form nickel hydroxide moieties associated with the porous region.
摘要:
Various embodiments of the resistive memory cells and arrays discussed herein comprise: (1) a first electrode; (2) a second electrode; (3) resistive memory material; and (4) a diode. The resistive memory material is selected from the group consisting of SiOx, SiOxNy, SiOxNyH, SiOxCz, SiOxCzH, and combinations thereof, wherein each of x, y and z are equal or greater than 1 or equal or less than 2. The diode may be any suitable diode, such as n-p diodes, p-n diodes, and Schottky diodes.
摘要翻译:本文讨论的电阻式存储器单元和阵列的各种实施例包括:(1)第一电极; (2)第二电极; (3)电阻记忆材料; 和(4)二极管。 电阻性存储材料选自SiO x,SiO x N y,SiO x N y H,SiO x C z,SiO x C z H及其组合,其中x,y和z中的每一个等于或大于1或等于或小于2.二极管可以是 任何合适的二极管,例如np二极管,pn二极管和肖特基二极管。
摘要:
Various embodiments of the resistive memory cells and arrays discussed herein comprise: (1) a first electrode; (2) a second electrode; (3) resistive memory material; and (4) a diode. The resistive memory material is selected from the group consisting of SiOx, SiOxH, SiOxNy, SiOxNyH, SiOxCz, SiOxCzH, and combinations thereof, wherein each of x, y and z are equal to or greater than 1 and equal to or less than 2. The diode may be any suitable diode, such as n-p diodes, p-n diodes, and Schottky diodes.
摘要翻译:本文讨论的电阻式存储器单元和阵列的各种实施例包括:(1)第一电极; (2)第二电极; (3)电阻记忆材料; 和(4)二极管。 电阻性存储材料选自SiO x,SiO x H,SiO x N y,SiO x N y H,SiO x C z,SiO x C z H及其组合,其中x,y和z各自等于或大于1且等于或小于2。 二极管可以是任何合适的二极管,例如np二极管,pn二极管和肖特基二极管。
摘要:
Various embodiments of the present disclosure pertain to nanocomposites for detecting hydrocarbons in a geological structure. In some embodiments, the nanocomposites include: a core particle; a polymer associated with the core particle; a sulfur-based moiety associated with the polymer; and a releasable probe molecule associated with the core particle, where the releasable probe molecule is releasable from the core particle upon exposure to hydrocarbons. Additional embodiments of the present disclosure pertain to methods of detecting hydrocarbons in a geological structure by utilizing the nanocomposites of the present disclosure.
摘要:
In some embodiments, the present disclosure pertains to methods of capturing a gas from an environment by associating the environment with a porous carbon material that includes, without limitation, protein-derived porous carbon materials, carbohydrate-derived porous carbon materials, cotton-derived porous carbon materials, fat-derived porous carbon materials, waste-derived porous carbon materials, asphalt-derived porous carbon materials, coal-derived porous carbon materials, coke-derived porous carbon materials, asphaltene-derived porous carbon materials, oil product-derived porous carbon materials, bitumen-derived porous carbon materials, tar-derived porous carbon materials, pitch-derived porous carbon materials, anthracite-derived porous carbon materials, melamine-derived porous carbon materials, and combinations thereof. In some embodiments, the associating results in sorption of gas components (e.g., CO2, H2S, and combinations thereof) to the porous carbon material. Additional embodiments of the present disclosure pertain to the porous carbon materials and methods of making the same.
摘要:
Various embodiments of the present disclosure pertain to methods of making magnetic carbon nanoribbons. Such methods generally include: (1) forming carbon nanoribbons by splitting carbon nanomaterials; and (2) associating graphene nanoribbons with magnetic materials, precursors of magnetic materials, or combinations thereof. Further embodiments of the present disclosure also include a step of reducing the precursors of magnetic materials to magnetic materials. In various embodiments, the associating occurs before, during or after the splitting of the carbon nanomaterials. In some embodiments, the methods of the present disclosure further comprise a step of (3) functionalizing the carbon nanoribbons with functionalizing agents. In more specific embodiments, the functionalizing occurs in situ during the splitting of carbon nanomaterials. In further embodiments, the carbon nanoribbons are edge-functionalized. Additional embodiments of the present disclosure pertain to magnetic carbon nanoribbon compositions that were formed in accordance with the methods of the present disclosure.
摘要:
In various embodiments, the present disclosure describes processes for preparing functionalized graphene nanoribbons from carbon nanotubes. In general, the processes include exposing a plurality of carbon nanotubes to an alkali metal source in the absence of a solvent and thereafter adding an electrophile to form functionalized graphene nanoribbons. Exposing the carbon nanotubes to an alkali metal source in the absence of a solvent, generally while being heated, results in opening of the carbon nanotubes substantially parallel to their longitudinal axis, which may occur in a spiralwise manner in an embodiment. The graphene nanoribbons of the present disclosure are functionalized on at least their edges and are substantially defect free. As a result, the functionalized graphene nanoribbons described herein display a very high electrical conductivity that is comparable to that of mechanically exfoliated graphene.
摘要:
The present invention provides methods of preparing functionalized graphene nanoribbons. Such methods include: (1) exposing a plurality of carbon nanotubes (CNTs) to an alkali metal source in the presence of an aprotic solvent to open them; and (2) exposing the opened CNTs to an electrophile to form functionalized graphene nanoribbons (GNRs). The methods may also include a step of exposing the opened CNTs to a protic solvent to quench any reactive species on them. Additional methods include preparing unfunctionalized GNRs by: (1) exposing a plurality of CNTs to an alkali metal source in the presence of an aprotic solvent to open them; and (2) exposing the opened CNTs to a protic solvent to form unfunctionalized GNRs.