摘要:
Embodiments of the present invention pertain to methods of forming patterned features on a substrate having an increased density (i.e. reduced pitch) as compared to what is possible using standard photolithography processing techniques using a single high-resolution photomask while also allowing both the width of the patterned features and spacing (trench width) between the patterned features to vary within an integrated circuit.
摘要:
Semiconductor devices suitable for narrow pitch applications and methods of fabrication thereof are described herein. In some embodiments, a semiconductor device may include a floating gate having a first width proximate a base of the floating gate that is greater than a second width proximate a top of the floating gate. In some embodiments, a method of shaping a material layer may include (a) oxidizing a surface of a material layer to form an oxide layer at an initial rate; (b) terminating formation of the oxide layer when the oxidation rate is about 90% or below of the initial rate; (c) removing at least some of the oxide layer by an etching process; and (d) repeating (a) through (c) until the material layer is formed to a desired shape. In some embodiments, the material layer may be a floating gate of a semiconductor device.
摘要:
Carbon with mesopores (about two to fifteen nanometers in average pore size) is made using sucrose as a source of carbon, and silica and phosphoric acid as templates for the mesopore structure in the carbon. A silica sol is prepared in a water/ethanol medium and sucrose is dispersed in the sol. Phosphoric acid may be added to the sol to control pore size in the mesopore size range. The sol is dried, carbonized, and the silica and phosphate materials removed by leaching. The residue is a mesoporous carbon mass having utility as a catalyst support, gas absorbent, and the like.
摘要:
The invention relates to methods and devices for characterizing tissue in vivo, e.g., in walls of blood vessels, to determine whether the tissue is healthy or diseased, and include methods of displaying results with or without thresholds.
摘要:
A photo-electronic window and windshield fog-rain detecting system comprising two sub-systems from a film-attached fog detecting assembly, a regular detecting and a rain detecting assembly, and a corresponding Gate-relation circuits to couple the two assemblies with each other electronically to make multi function detecting. The regular detecting assembly uses an emitter to transmit light signals towards a test area on the windshield and uses a sensor to receive signals portion from the test area to sense the changes in the received signal portion, caused by fog or rain, so as to verify the existence of for or rain on the windshield. The film-attached assembly is formed by applying an appropriate opaque thin film material to the test area, such as foil, plastic, paint, etc., to avoid meeting any influence by the outside fog and rain, so as to be able to reliably detect fog on the interior surface of windshield and handle the defogger. The rain detecting assembly is formed by using a covering mounting structure to completely cover the detecting devices on the interior surface of windshield to avoid meeting any inside fog, so as to be able to reliably detect outside fog or rain on the exterior surface and handle the wipers. By coupling any two of three assemblies together electronically, a reliably multi function fog and rain detector is built up to instantly actuate a right tool, wipers or the vehicle defogger, to clear the windshield up when fog or rain is on.
摘要:
Laser tissue welding can be achieved using tunable Cr4+ lasers, semiconductor lasers and fiber lasers, where the weld strength follows the absorption spectrum of water. The use of gelatin and esterified gelatin as solders in conjunction with laser inducted tissue welding impart much stronger tensile and torque strengths than albumin solders. Selected NIR wavelength from the above lasers can improve welding and avoid thermal injury to tissue when used alone or with gelatin and esterified gelatin solders. These discoveries can be used to enhance laser tissue welding of tissues such as skin, mucous, bone, blood vessel, nerve, brain, liver, pancreas, spleen, kidney, lung, bronchus, respiratory track, urinary tract, gastrointestinal tract, or gynecologic tract and as a sealant for pulmonary air leaks and fistulas such as intestinal, rectal and urinary fistulas.
摘要:
A wireless capsule as a disease diagnosis tool in vivo can be introduced into a biological body by a native and/or artificial open, or endoscope, or an injection. The information obtained from a micro-spectrometer, and/or an imaging system, or a micro-biosensor, all of which are built-in a wireless capsule, can be transmitted to the outside of the biological body for medical diagnoses. In addition, a real-time specimen collection device is integrated with the diagnostic system for the in-depth in vitro analysis