Abstract:
A building management system includes building equipment configured to consume electrical energy and generate thermal energy, thermal energy storage configured to store at least a portion of the thermal energy generated by the building equipment and to discharge the stored thermal energy, electrical energy storage configured to store electrical energy purchased from a utility and to discharge the stored electrical energy, and a controller. The controller is configured to determine, for each time step within a time horizon, an optimal amount of electrical energy stored or discharged by the electrical energy storage by optimizing a value function.
Abstract:
Systems and methods for evaluating a fault condition in a building include determining a change to energy use model parameters attributable to the fault condition. The change to the energy use model parameters are used to calculate a corresponding change to the building's energy consumption.
Abstract:
An optimization system for a central plant includes a processing circuit configured to receive load prediction data indicating building energy loads and utility rate data indicating a price of one or more resources consumed by equipment of the central plant to serve the building energy loads. The optimization system includes a high level optimization module configured to generate an objective function that expresses a total monetary cost of operating the central plant over an optimization period as a function of the utility rate data and an amount of the one or more resources consumed by the central plant equipment. The high level optimization module is configured to optimize the objective function over the optimization period subject to load equality constraints and capacity constraints on the central plant equipment to determine an optimal distribution of the building energy loads over multiple groups of the central plant equipment.
Abstract:
A controller for a building management system includes a first data interface configured to receive data from the building management system and a processing circuit including a processor and a memory device storing a fault detection rule having an initial threshold value. The processing circuit is configured to detect a first fault in the building management system using the stored fault detection rule having the initial threshold value and to use the data from the building management system to determine whether an adjustment to the stored fault detection rule is needed. In response to a determination that an adjustment to the stored fault detection rule is needed, the processing circuit is configured to calculate a new threshold value for the stored fault detection rule and update the stored fault detection rule by replacing the initial threshold value with the new threshold value.
Abstract:
A computer system for use with a building management system in a building includes a processing circuit configured to use historical data received from the building management system to automatically select a set of variables estimated to be significant to energy usage in the building. The processing circuit is further configured to apply a regression analysis to the selected set of variables to generate a baseline model for predicting energy usage in the building.
Abstract:
A controller for equipment that operate to provide heating or cooling to a building or campus includes a processing circuit configured to obtain utility rate data indicating a price of resources consumed by the equipment to serve energy loads of the building or campus, obtain an objective function that expresses a total monetary cost of operating the equipment over an optimization period as a function of the utility rate data and an amount of the resources consumed by the equipment, determine a relationship between resource consumption and load production of the equipment, optimize the objective function over the optimization subject to a constraint based on the relationship between the resource consumption and the load production of the equipment to determine a distribution of the load production across the equipment, and operate the equipment to achieve the distribution.
Abstract:
A controller for equipment that operate to provide heating or cooling to a building or campus includes a processing circuit configured to obtain utility rate data indicating a price of resources consumed by the equipment to serve energy loads of the building or campus, obtain an objective function that expresses a total monetary cost of operating the equipment over an optimization period as a function of the utility rate data and an amount of the resources consumed by the equipment, determine a relationship between resource consumption and load production of the equipment, optimize the objective function over the optimization subject to a constraint based on the relationship between the resource consumption and the load production of the equipment to determine a distribution of the load production across the equipment, and operate the equipment to achieve the distribution.
Abstract:
A method for initiating and automatically improving model-driven operations in a low-data scenario includes creating a regression model using pre-operation data prior to initiating the model-driven operations, using the regression model to initiate and perform the model-driven operations during an operational stage, collecting operational data during the operational stage, creating a first artificial neural network model using the operational data, transitioning from using the regression model to perform the model-driven operations to using the first artificial neural network model to perform the model-driven operations responsive to the operational data satisfying a first sufficiency threshold.
Abstract:
A building manager includes a communications interface configured to receive information from a smart energy grid. The building manager further includes an integrated control layer configured to receive inputs from and to provide outputs to a plurality of building subsystems. The integrated control layer includes a plurality of control algorithm modules configured to process the inputs and to determine the outputs. The building manager further includes a fault detection and diagnostics layer configured to use statistical analysis on the inputs received from the integrated control layer to detect and diagnose faults. The building manager yet further includes a demand response layer configured to process the information received from the smart energy grid to determine adjustments to the plurality of control algorithms of the integrated control layer.
Abstract:
A building system for a building including one or more storage devices storing instructions thereon that, when executed by one or more processors, cause the one or more processors to operate one or more pieces of building equipment associated with a building space based on a first operating mode. The instructions cause the one or more processors to receive an indication to update operation of the building space based on an emergency situation and responsive to receiving the indication to update operation of the building space based on the emergency situation, operate the one or more pieces of building equipment based on a second operating mode, wherein the second operating mode defines one or more second parameters for the one or more pieces of building equipment and is adapted to reconfigure the operation of the building space to address or mitigate the emergency situation.