摘要:
A semiconductor structure and a method for forming the same. The semiconductor structure includes a semiconductor substrate. The semiconductor structure further includes an electrically insulating region on top of the semiconductor substrate. The semiconductor structure further includes a first semiconductor region on top of and in direct physical contact with the semiconductor substrate. The semiconductor structure further includes a second semiconductor region on top of the insulating region. The semiconductor structure further includes a capacitor in the first semiconductor region and the semiconductor substrate. The semiconductor structure further includes a capacitor electrode contact in the second semiconductor region and the electrically insulating region.
摘要:
A structure and method of forming a body contact for an semiconductor-on-insulator trench device. The method including: forming set of mandrels on a top surface of a substrate, each mandrel of the set of mandrels arranged on a different corner of a polygon and extending above the top surface of the substrate, a number of mandrels in the set of mandrels equal to a number of corners of the polygon; forming sidewall spacers on sidewalls of each mandrel of the set of mandrels, sidewalls spacers of each adjacent pair of mandrels merging with each other and forming a unbroken wall defining an opening in an interior region of the polygon, a region of the substrate exposed in the opening; etching a contact trench in the substrate in the opening; and filling the contact trench with an electrically conductive material to form the contact.
摘要:
Trench type PIN photodetectors are formed by etching two sets of trenches simultaneously in a semiconductor substrate, the wide trenches having a width more than twice as great as the narrow trenches by a process margin; conformally filling both types of trenches with a sacrificial material doped with a first dopant and having a first thickness slightly greater than one half the width of the narrow trenches, so that the wide trenches have a remaining central aperture; stripping the sacrificial material from the wide trenches in an etch that removes a first thickness, thereby emptying the wide trenches; a) filling the wide trenches with a second sacrificial material of opposite polarity; or b) doping the wide trenches from the ambient such as by gas phase doping, plasma doping, ion implantation, liquid phase doping, infusion doping and plasma immersion ion implantation; diffusing the dopants into the substrate, forming p and n regions of the PIN diode; removing the first and the second sacrificial materials, and filling both the wide and the narrow sets of trenches with the same conductive material in contact with the diffused p and n regions.
摘要:
A region of a semiconductor wafer is converted to an SOI structure by etching a set of isolation trenches for each transistor active area and oxidizing the sidewalls of the trenches to a depth that leaves a pillar of semiconductor that forms a body contact extending from the active area downward to the bulk semiconductor. A self-aligned gate is then formed above the body contact.
摘要:
A structure and method are provided for forming a collar surrounding a portion of a trench in a semiconductor substrate, the collar having a lower edge self-aligned to a top edge of a buried plate disposed adjacent to a lower portion of the trench.
摘要:
A field effect transistor formed by a sacrificial gate process has a simplified process and improved yield by using a tunable resistant anti-reflective coating (TERA) as the cap layer over the sacrificial gate layer. The TERA layer serves as a tunable anti-reflection layer for photolithography patterning, a hardmask for etching the sacrificial gate, a polish stopping layer for planarization, and a blocking layer for preventing silicide formation over the sacrificial gate. The TERA is stripped by a two-step process that is highly selective to the nitride spacers, so that the spacers are not damaged in the process of stripping the sacrificial gate.
摘要:
A method of forming a memory cell having a trench capacitor and a vertical transistor in a semiconductor substrate includes a step of providing a bonded semiconductor wafer having a lower substrate with an [010] axis parallel to a first wafer axis and an upper semiconductor layer having an [010] axis oriented at forty-five degrees with respect to the wafer axis, the two being connected by a layer of bonding insulator; etching a trench through the upper layer and lower substrate; enlarging the lower portion of the trench and converting the cross section of the upper portion of the trench from octagonal to rectangular, so that sensitivity to alignment errors between the trench lithography and the active area lithography is reduced. An alternative version employs a bonded semiconductor wafer having a lower substrate formed from a (111) crystal structure and the same upper portion. Applications include a vertical transistor that becomes insensitive to misalignment between the trench and the lithographic pattern for the active area, in particular a DRAM cell with a vertical transistor.
摘要:
A trench capacitor formed with a bottle etch step has a polygonal cross section produced by forming thermally oxidizing the trench walls with thinner oxide at the corners of the trench, then performing the bottle etch step with the nitride in place, thereby extending the trench walls laterally only outside the corners, so that the distance of closest approach between adjacent trenches is reduced while the length of the perimeter is maintained.
摘要:
A region of a semiconductor wafer is converted to an SOI structure by etching a set of isolation trenches for each transistor active area and oxidizing the sidewalls of the trenches to a depth that leaves a pillar of semiconductor that forms a body contact extending from the active area downward to the bulk semiconductor. A self-aligned gate is then formed above the body contact.
摘要:
A method of forming a memory cell having a trench capacitor and a vertical transistor in a semiconductor substrate includes a step of providing a bonded semiconductor wafer having a lower substrate with an [010] axis parallel to a first wafer axis and an upper semiconductor layer having an [010] axis oriented at forty-five degrees with respect to the wafer axis, the two being connected by a layer of bonding insulator; etching a trench through the upper layer and lower substrate; enlarging the lower portion of the trench and converting the cross section of the upper portion of the trench from octagonal to rectangular, so that sensitivity to alignment errors between the trench lithography and the active area lithography is reduced. An alternative version employs a bonded semiconductor wafer having a lower substrate formed from a (111) crystal structure and the same upper portion. Applications include a vertical transistor that becomes insensitive to misalignment between the trench and the lithographic pattern for the active area, in particular a DRAM cell with a vertical transistor.