Abstract:
Metrology targets, optical systems and methods are provided, which enable metrology measurements of very small features, using resonance of illuminated radiation within periodical structures of the target, under appropriate illumination. Metrology targets comprise periodical structure(s) configured to resonate incident radiation and having a pitch defined by the grating equation with respect to configured parameters such as the selected diffraction order, refractive indices and the illumination's wavelength(s) and incidence angles. Possibly, the target may further comprise substructure(s) which are optically coupled with the resonating incident radiation in the periodical structure(s). The spatial organization of the periodic structures and the substructures, as well as the optical organization of illuminated and scattered radiation provide collecting phase signals from the targets at a range of parameters, such as different wavelengths, spatial angles and polarizations to enhance the metrology signal and achieve a very high sensitivity to very small target features.
Abstract:
A method and system for overly measurement is disclosed. The overlay measurement is performed based on moiré effect observed between structured illumination grids and overlay targets. A structured illumination is used to illuminate a first overlay target and a second overlay target. Upon obtaining an image of the first overlay target illuminated by the structured illumination and an image of the second overlay target illuminated by the structured illumination, relative displacement between the first overlay target and the structured illumination and relative displacement between the second overlay target and the structured illumination are measured. The overlay between the first overlay target and the second overlay target is then measured based on their relative displacements with respect to the structured illumination.
Abstract:
The disclosure is directed to various apodization schemes for pupil imaging scatterometry. In some embodiments, the system includes an apodizer disposed within a pupil plane of the illumination path. In some embodiments, the system further includes an illumination scanner configured to scan a surface of the sample with at least a portion of apodized illumination. In some embodiments, the system includes an apodized pupil configured to provide a quadrupole illumination function. In some embodiments, the system further includes an apodized collection field stop. The various embodiments described herein may be combined to achieve certain advantages.
Abstract:
Metrology targets, optical systems and methods are provided, which enable metrology measurements of very small features, using resonance of illuminated radiation within periodical structures of the target, under appropriate illumination. Metrology targets comprise periodical structure(s) configured to resonate incident radiation and having a pitch defined by the grating equation with respect to configured parameters such as the selected diffraction order, refractive indices and the illumination's wavelength(s) and incidence angles. Possibly, the target may further comprise substructure(s) which are optically coupled with the resonating incident radiation in the periodical structure(s). The spatial organization of the periodic structures and the substructures, as well as the optical organization of illuminated and scattered radiation provide collecting phase signals from the targets at a range of parameters, such as different wavelengths, spatial angles and polarizations to enhance the metrology signal and achieve a very high sensitivity to very small target features.
Abstract:
Metrology systems and methods are provided herein, which comprise an optical element that is positioned between an objective lens of the system and a target. The optical element is arranged to enhance evanescent modes of radiation reflected by the target. Various configurations are disclosed: the optical element may comprise a solid immersion lens, a combination of Moiré-elements and solid immersion optics, dielectric-metal-dielectric stacks of different designs, and resonating elements to amplify the evanescent modes of illuminating radiation. The metrology systems and methods are configurable to various metrology types, including imaging and scatterometry methods.
Abstract:
Various metrology systems and methods are provided. One metrology system includes a light source configured to produce a diffraction-limited light beam, an apodizer configured to shape the light beam in the entrance pupil of illumination optics, and optical elements configured to direct the diffraction-limited light beam from the apodizer to an illumination spot on a grating target on a wafer and to collect scattered light from the grating target. The metrology system further includes a field stop and a detector configured to detect the scattered light that passes through the field stop. In addition, the metrology system includes a computer system configured to determine a characteristic of the grating target using output of the detector.