Abstract:
A digital television (DTV) signal for use in a DTV receiver includes an extended text table (ETT) which includes a header and a message body. The header includes a table identification extension field which serves to establish uniqueness of the ETT, and the message includes an extended text message (ETM). If the ETT is an event ETT, the table ID extension field includes an event identification which specifies an identification number of an event associated with the ETT. On the other hand, if the ETT is a channel ETT, the table identification extension field includes a source identification which specifies a programming source of a virtual channel associated with the ETT. A section-filtering unit included in the DTV receiver is able to use table identification extension fields of a plurality of ETTs for section-filtering a pertinent event or channel ETT from the ETTs.
Abstract:
A method of transmitting a broadcast signal includes encoding mobile data for FEC (Forward Error Correction); encoding signaling information for signaling the mobile data; allocating the encoded mobile data and signaling data into a transmission frame; and transmitting the broadcast signal including the transmission frame, wherein the transmission frame includes a service signaling table having service_type information identifying a type of a service of the mobile data and hidden information indicating whether the service of the mobile data is hidden or not.
Abstract:
A broadcast receiver and a method for processing 3D video data are disclosed. A method for processing video data of a broadcast receiver includes receiving a broadcast signal including a video stream, wherein the video stream includes a plurality of video stream sections having different viewpoints, acquiring viewpoint information indicating corresponding viewpoints of the video stream sections, and outputting an interface indicating a viewpoint of the video stream that is currently displayed according to the viewpoint information.
Abstract:
A digital broadcasting system and a data processing method are disclosed. A receiver receives a broadcast signal including mobile service data and main service data. A known data detector detects known data from the broadcast signal. An equalizer performs channel equalization on the mobile service data received by means of the detected known data. An RS frame decoder acquires an RS frame from the channel-equalized mobile service data. A management processor extracts a Generic Stream Encapsulation (GSE) packet from a GSE Base Band (BB) constructing one row of the RS frame, and calculates an IP datagram from the extracted GSE packet. A presentation processor displays broadcast data using data contained in the calculated IP datagram.
Abstract:
A receiving system and a data processing method are disclosed. The receiving system includes a receiving unit, a demodulator, a first handler, and a second handler. The receiving unit receives a broadcast signal including fast information channel (FIC) data, mobile service data, and a service signaling channel, the FIC data including a field indicating that a table signaling service guide bootstrap information to the service signaling channel is included therein, and the mobile service data and the service signaling channel are packetized into an RS frame belonging to a desired ensemble. The demodulator demodulates the received broadcast signal. The first handler acquires service guide bootstrap information from the table included in the service signaling channel. And, the second handler accesses a service guide announcement channel by using the service guide bootstrap information.
Abstract:
A method of transmitting a broadcast signal includes encoding mobile data for FEC (Forward Error Correction); encoding signaling information for signaling the mobile data; allocating the encoded mobile data and signaling data into a transmission frame; and transmitting the broadcast signal including the transmission frame, wherein the transmission frame includes a service signaling table having service_type information identifying a type of a service of the mobile data and hidden information indicating whether the service of the mobile data is hidden or not.
Abstract:
A virtual channel table for broadcasting protocol and a method for broadcasting by using the virtual channel table includes identification information identifying and permitting discrimination of active and inactive channels contained in the virtual channel table. At a receiver, the virtual channel table transmitted from the transmitting side is parsed, thereby determining whether the current received channel is an active or inactive channel.
Abstract:
A digital broadcasting system is provided. The system includes an RS (Reed-Solomon) encoder configured to encode mobile service data for FEC (Forward Error Correction) to build RS frames including the mobile service data and a signaling information table, a signaling encoder configured to encode signaling information including fast information channel (FIC) data and transmission parameter channel (TPC) data, a group formatter configured to form data groups, wherein at least one of the data groups includes encoded mobile service data, known data sequences, the FIC data and the TPC data, and a transmission unit configured to transmit the broadcast signal including a parade of the data groups.
Abstract:
A broadcast receiver and a 3D broadcast data processing method are disclosed. The processing method includes receiving a broadcast signal including system information (SI) and video data, parsing SI of a program, and determining whether the program provides a 3D broadcast service on the basis of the SI, extracting, if the program provides a 3D broadcast service, 3D broadcast data corresponding to the 3D broadcast service, and processing the 3D video data according to the SI. The broadcast receiver includes a receiving unit receiving a broadcast signal including SI and video data, an SI processor parsing system information of a program, and determining whether the program provides a 3D broadcast service on the basis of the SI, a demultiplexer extracting, if the program provides a 3D broadcast service, 3D broadcast data corresponding to a 3D broadcast service, and a video processing unit processing 3D video data according to the SI.
Abstract:
Disclosed are a method for displaying 3D images and a broadcast receiver. The method for displaying 3D images according to one embodiment of the present invention comprises the steps of: receiving broadcasting signals including video data and 3D object data; decoding the 3D object data, the 3D object data including texts or image information for a 3D object, output position information of the 3D object, and disparity information of the 3D object; obtaining parallax values from the disparity information and producing distortion compensation coefficients using the parallax values; adjusting a display size of the 3D object using the distortion compensation coefficients; and outputting and displaying the 3D object.