摘要:
A method of producing a marker on a substrate includes projecting a patterned beam on a layer of resist disposed on a substrate in a lithographic apparatus to create a latent marker; and locally heating the substrate at the marker location in the lithographic apparatus to transform the latent marker into a detectable marker.
摘要:
An alignment system for a lithographic apparatus includes a detection system arranged in a path of at least a portion of an alignment radiation. The alignment system also includes a position determining unit in communication with the detection system. The position determining unit is adapted to measure a position of at least one alignment mark on a substrate. The substrate is overlaid with a layer of deposited material. A calculating unit is coupled to the position determining unit. The calculating unit calculates a corrected position of the alignment mark on the basis of the position of the at least one alignment mark being measured and a model of a process apparatus involved in a deposition of the layer of deposited material. The model taking into account an amount of deposition of the layer of deposited material.
摘要:
A lithographic system includes a lithographic apparatus and a scatterometer. In an embodiment, the lithographic apparatus includes an illumination optical system arranged to illuminate a pattern and a projection optical system arranged to project an image of the pattern on to a substrate. In an embodiment, the scatterometer includes a measurement system arranged to direct a beam of radiation onto a target pattern on said substrate and to obtain an image of a pupil plane representative of radiation scattered from the target pattern. A computational arrangement represents the pupil plane by moment functions calculated from a pair of orthogonal basis function and correlates the moment function to lithographic feature parameters to build a lithographic system identification. A control arrangement uses the system identification to control subsequent lithographic processes performed by the lithographic apparatus.
摘要:
Disclosed are methods, apparatuses, and lithographic systems for calibrating an inspection apparatus. Radiation is projected onto a pattern in a target position of a substrate. By making a plurality of measurements of the pattern and comparing the measured first or higher diffraction orders of radiation reflected from the pattern of different measurements, a residual error indicative of the error in a scatterometer may be calculated. This error is an error in measurements of substrate parameters caused by irregularities of the scatterometer. The residual error may manifest itself as an asymmetry in the diffraction spectra.
摘要:
A method and associated apparatus determine an overlay error on a substrate. A beam is projected onto three or more targets. Each target includes first and second overlapping patterns with predetermined overlay offsets on the substrate. The asymmetry of the radiation reflected from each target on the substrate is measured. The overlay error not resultant from the predetermined overlay offsets is determined. The function that enables calculation of overlay from asymmetry for other points on the wafer is determined by limiting the effect of linearity error when determining the overlay error from the function.
摘要:
An apparatus measures properties, such as overlay error, of a substrate divided into a plurality of fields. The apparatus includes a radiation source configured to direct radiation onto a first target of each field of the substrate. Each first target (T4G) has at least a first grating and a second grating having respective predetermined offsets, the predetermined offset (+d) of the first grating being in a direction opposite the predetermined offset (−d) of the second grating. A detector is configured to detect the radiation reflected from each first target and to obtain an asymmetry value for each first target from the detected radiation. Further, a module is configured to determine an overlay value for each first target based on at least the obtained asymmetry value and the predetermined offsets and determine a polynomial fit across a plurality of first targets of a corresponding plurality of fields of the substrate for a relationship between the obtained asymmetry value and determined overlay value of each first target.
摘要:
A method of determining an overlay error in which asymmetry of a first order of a diffraction pattern is modeled as being a weighted sum of harmonics. Both the first order harmonic and higher order harmonics are non-negligible and weights for both are calculated. The weights are calculated using three or more of sets of superimposed patterns using a least mean square method.
摘要:
A lithographic system includes a lithographic apparatus and a scatterometer. In an embodiment, the lithographic apparatus includes an illumination optical system arranged to illuminate a pattern and a projection optical system arranged to project an image of the pattern on to a substrate. In an embodiment, the scatterometer includes a measurement system arranged to direct a beam of radiation onto a target pattern on said substrate and to obtain an image of a pupil plane representative of radiation scattered from the target pattern. A computational arrangement represents the pupil plane by moment functions calculated from a pair of orthogonal basis function and correlates the moment function to lithographic feature parameters to build a lithographic system identification. A control arrangement uses the system identification to control subsequent lithographic processes performed by the lithographic apparatus.
摘要:
When using a scatterometer different portions of a target area may be at different focal depths. When the whole area is measured this results in part of it being out of focus. To compensate for this an array of lenses is placed in the back focal plane of the high numerical aperture lens.
摘要:
A lithographic apparatus includes an illumination system configured to condition a radiation beam, a support for a patterning device, a substrate table for a substrate, a projection system, and a control system. The patterning device is capable of imparting the radiation beam with a pattern in its cross-section to form a patterned radiation beam. The projection system is configured to project the patterned radiation beam as an image onto a target portion of the substrate along a scan path. The scan path is defined by a trajectory in a scanning direction of an exposure field of the lithographic apparatus. The control system is coupled to the support, the substrate table and the projection system for controlling an action of the support, the substrate table and the projection system, respectively. The control system is configured to correct a local distortion of the image in a region along the scan path by a temporal adjustment of the image in that region.