Abstract:
Methods, systems, and devices for drift mitigation with embedded refresh are described. A memory cell may be written to and read from using write and read voltages, respectively, that are of different polarities. For example, a memory cell may be written to by applying a first write voltage and may be subsequently read from by applying a first read voltage of a first polarity. At least one additional (e.g., a second) read voltage—a setback voltage—of a second polarity may be utilized to return the memory cell to its original state. Thus the setback voltage may mitigate a shift in the voltage distribution of the cell caused by the first read voltage.
Abstract:
A semiconductor structure includes stack structures. Each of the stack structures comprises a first conductive material, a chalcogenide material over the first conductive material, a second conductive material over the chalcogenide material, and a first dielectric material between the chalcogenide material and the first conductive material and between the chalcogenide material and the second conductive material. The semiconductor structure further comprises a second dielectric material on at least sidewalls of the chalcogenide material. The chalcogenide material may be substantially encapsulated by one or more dielectric materials. Related semiconductor structures and related methods are disclosed.
Abstract:
Methods, systems, and devices for multi-deck memory arrays are described. A multi-deck memory device may include a memory array with a cell having a self-selecting memory element and another array with a cell having a memory storage element and a selector device. The device may be programmed to store multiple combinations of logic states using cells of one or more decks. Both the first deck and second deck may be coupled to at least two access lines and may have one access line that is a common access line, coupling the two decks. Additionally, both decks may overlie control circuitry, which facilitates read and write operations. The control circuitry may be configured to write a first state or a second state to one or both of the memory decks via the access lines.
Abstract:
Various embodiments disclosed herein comprise methods and apparatuses for placing phase-change memory (PCM) cells of a memory array into a temperature regime where nucleation probability of the PCM cells is enhanced prior to applying a subsequent SET programming signal. In one embodiment, the method includes applying a nucleation signal to the PCM cells to form nucleation sites within the memory array where the nucleation signal has a non-zero rising-edge. A programming signal is subsequently applied to achieve a desired level of crystallinity within selected ones of the plurality of PCM cells. Additional methods and apparatuses are also described.
Abstract:
Disclosed herein is a memory cell including a memory element and a selector device. Data may be stored in both the memory element and selector device. The memory cell may be programmed by applying write pulses having different polarities and magnitudes. Different polarities of the write pulses may program different logic states into the selector device. Different magnitudes of the write pulses may program different logic states into the memory element. The memory cell may be read by read pulses all having the same polarity. The logic state of the memory cell may be detected by observing different threshold voltages when the read pulses are applied. The different threshold voltages may be responsive to the different polarities and magnitudes of the write pulses.
Abstract:
Subject matter disclosed herein relates to techniques involving a structural relaxation (SR) phenomenon for increasing resistance of a Reset state of phase change memory.
Abstract:
Some embodiments include integrated devices, such as memory cells. The devices may include chalcogenide material, an electrically conductive material over the chalcogenide material, and a thermal sink between the electrically conductive material and the chalcogenide material. The thermal sink may be of a composition that includes an element in common with the electrically conductive material and includes an element in common with the chalcogenide material. Some embodiments include a method of forming a memory cell. Chalcogenide material may be formed over heater material. Electrically conductive material may be formed over the chalcogenide material. A thermal sink may be formed between the electrically conductive material and the chalcogenide material. The thermal sink may be of a composition that includes an element in common with the electrically conductive material and includes an element in common with the chalcogenide material.
Abstract:
Some embodiments include integrated devices, such as memory cells. The devices may include chalcogenide material, an electrically conductive material over the chalcogenide material, and a thermal sink between the electrically conductive material and the chalcogenide material. The thermal sink may be of a composition that includes an element in common with the electrically conductive material and includes an element in common with the chalcogenide material. Some embodiments include a method of forming a memory cell. Chalcogenide material may be formed over heater material. Electrically conductive material may be formed over the chalcogenide material. A thermal sink may be formed between the electrically conductive material and the chalcogenide material. The thermal sink may be of a composition that includes an element in common with the electrically conductive material and includes an element in common with the chalcogenide material.
Abstract:
Embodiments include but are not limited to apparatuses and systems including memory having a memory cell including a variable resistance memory layer, and a selector switch in direct contact with the memory cell, and configured to facilitate access to the memory cell. Other embodiments may be described and claimed.
Abstract:
Some embodiments include memory constructions having a plurality of bands between top and bottom electrically conductive materials. The bands include chalcogenide bands alternating with non-chalcogenide bands. In some embodiments, there may be least two of the chalcogenide bands and at least one of the non-chalcogenide bands. In some embodiments, the memory cells may be between a pair of electrodes; with one of the electrodes being configured as a lance, angled plate, container or beam. In some embodiments, the memory cells may be electrically coupled with select devices, such as, for example, diodes, field effect transistors or bipolar junction transistors.