摘要:
In a substrate vertical transistor cells are formed and are arranged, in a transistor cell array, row by row in an x direction and column by column in a y direction. Lower source/drain regions of the transistor cells are connected to a common connection plate. Upper source/drain regions of the transistor cells impart a contact connection for instance to a storage capacitor of a DRAM memory cell. Active trenches running between the transistor cells with word lines are formed along the x direction. The word lines form gate electrodes in sections. A potential at the gate electrode controls a conductive channel in an active region arranged in each case between the upper and the lower source/drain connection region. According to the invention, the active regions of adjacent transistor cells are sections of a contiguous layer body and are connected to one another. An accumulation of charge carriers in the active region and floating body effects are avoided without increasing the area requirement of a transistor cell.
摘要:
A storage capacitor, suitable for use in a DRAM cell, is at least partially formed above a substrate surface and includes: a storage electrode at least partially formed above the substrate surface, a dielectric layer formed adjacent the storage electrode, and a counter electrode formed adjacent the dielectric layer, the counter electrode being isolated from the storage electrode by the dielectric layer, wherein the storage electrode is formed as a body which is delimited by at least one curved surface having a center of curvature outside the body in a plane parallel to the substrate surface. According to another configuration, the storage electrode is formed as a body which is delimited by at least one set having two contiguous planes, the two planes extending perpendicularly with respect to the substrate surface, a point of intersection of normals of the two planes lying outside the body.
摘要:
A memory device includes a DRAM memory cell array, which is implemented as a 6 F×F array, and peripheral circuitry. The word lines of the memory cell array are implemented as buried word lines, and, in addition, the bit lines including the bit line contacts are made of a bit line layer stack. The peripheral circuitry includes a peripheral transistor including first and second source/drain regions, a channel connecting the first and the second source/drain regions as well as a peripheral gate electrode for controlling an electrical current of the channel. The peripheral gate electrode is made of a peripheral gate stack including a layer stack which is identical with the bit line stack.
摘要:
The present invention relates to a method for producing a dielectric on a semiconductor body having the following steps that are to be performed successively: provision of a semiconductor body, application of a dielectric layer on at least parts of a first surface of the semiconductor body in such a way as at least partly to form an interface between the dielectric layer and the semiconductor body, and thermal annealing of the semiconductor body and the dielectric layer. The method according to the invention is distinguished by the fact that temporally prior to the annealing, for the purpose of improving the saturation and the electrical properties, fluorine-containing particles are introduced into regions of the semiconductor body and/or of the dielectric layer which adjoin the interface. The present invention furthermore relates to a corresponding semiconductor structure.
摘要:
An integrated circuit arrangement that has an integrated test structure is provided. The integrated circuit arrangement includes a transistor array having vertical FET selection transistors electrically coupled to storage capacitors of an assigned memory cell array, the storage capacitors being formed vertically into the depth of a substrate in deep trenches. The test structure may enable a plurality of vertical FET selection transistors by a conductive electrode material embedded in an extended deep trench. With a test structure of this type, it is possible to evaluate characteristic values for leakage currents and capacitances at different semiconductor junctions and also between different sections of the integrated circuit arrangement and also to perform reliability stress tests.
摘要:
Memory cells each having a cell capacitor and a cell transistor, which are arranged in a vertical cell structure, are provided in the cell array of a DRAM. By means of a deep implantation or a shallow implantation and subsequent epitaxial growth of silicon, a buried source/drain layer is formed, from which lower source/drain regions of the cell transistors emerge. The upper edge of the buried source/drain layer can be aligned with respect to a lower edge of a gate electrode of the cell transistor and this results in a reduction of a gate/drain capacitance and also a leakage current between the gate electrode and the lower source/drain region. A body connection plate for the connection of the channel regions is applied to the substrate surface and contact holes are introduced into the body connection plate. Upper source/drain regions of the cell transistors are formed by implantation through the contact holes.
摘要:
In a substrate vertical transistor cells are formed and are arranged, in a transistor cell array, row by row in an x direction and column by column in a y direction. Lower source/drain regions of the transistor cells are connected to a common connection plate. Upper source/drain regions of the transistor cells impart a contact connection for instance to a storage capacitor of a DRAM memory cell. Active trenches running between the transistor cells with word lines are formed along the x direction. The word lines form gate electrodes in sections. A potential at the gate electrode controls a conductive channel in an active region arranged in each case between the upper and the lower source/drain connection region. According to the invention, the active regions of adjacent transistor cells are sections of a contiguous layer body and are connected to one another. An accumulation of charge carriers in the active region and floating body effects are avoided without increasing the area requirement of a transistor cell.