摘要:
In accordance with an embodiment of the present invention, a method of forming an electronic device includes forming a first opening and a second opening in a workpiece. The first opening is deeper than the second opening. The method further includes forming a fill material within the first opening to form part of a through via and forming the fill material within the second opening.
摘要:
In accordance with an embodiment of the present invention, a method of forming an electronic device includes forming a first opening and a second opening in a workpiece. The first opening is deeper than the second opening. The method further includes forming a fill material within the first opening to form part of a through via and forming the fill material within the second opening.
摘要:
An semiconductor device is disclosed. The device includes a semiconductor body, a layer of insulating material disposed over the semiconductor body, and a region of gate electrode material disposed over the layer of insulating material. Also included are a source region adjacent to gate region and a drain region adjacent to the gate region. A gate connection is disposed over the semiconductor body, wherein the gate connection includes a region of gate electrode material electrically coupling a contact region to the gate electrode. An insulating region is disposed on the semiconductor body beneath the gate connection.
摘要:
A method for producing an electrically conductive connection between a first surface of a semiconductor substrate and a second surface of the semiconductor substrate includes producing a hole, forming an electrically conductive layer that includes tungsten, removing the electrically conductive layer from the first surface of the semiconductor substrate, filling the hole with copper and thinning the semiconductor substrate. The hole is produced from the first surface of the semiconductor substrate into the semiconductor substrate. The electrically conductive layer is removed from the first surface of the semiconductor substrate, wherein the electrically conductive layer remains at least with reduced thickness in the hole. The semiconductor substrate is thinned starting from a surface, which is an opposite surface of the first surface of the semiconductor substrate, to obtain the second surface of the semiconductor substrate with the hole being uncovered at the second surface of the semiconductor substrate.
摘要:
An semiconductor device is disclosed. The device includes a semiconductor body, a layer of insulating material disposed over the semiconductor body, and a region of gate electrode material disposed over the layer of insulating material. Also included are a source region adjacent to gate region and a drain region adjacent to the gate region. A gate connection is disposed over the semiconductor body, wherein the gate connection includes a region of gate electrode material electrically coupling a contact region to the gate electrode. An insulating region is disposed on the semiconductor body beneath the gate connection.
摘要:
A method for producing a dielectric layer on a substrate made of a conductive substrate material includes reducing a leakage current that flows through defects of the dielectric layer at least by a self-aligning and self-limiting electrochemical conversion of the conductive substrate material into a nonconductive substrate follow-up material in sections of the substrate that are adjacent to the defects. Also provided is a configuration including a dielectric layer with defects, a substrate made of a conductive substrate material, and reinforcement regions made of the nonconductive substrate follow-up material in sections adjacent to the defects.
摘要:
The present invention refers to a method of forming a silicon dioxide layer by thermally oxidizing at least one monocrystalline silicon surface region on a semiconductor substrate. The silicon surface region has a curved surface. The method can include providing a semiconductor substrate having at least one monocrystalline silicon surface region having a curved surface, roughening the surface of the at least one monocrystalline silicon surface region to produce a layer of porous silicon, and thermally oxidizing the at least one roughened monocrystalline silicon surface.
摘要:
The invention provides a method for fabricating a memory cell, a substrate (101) being provided, a trench-type depression (102) being etched into the substrate (101), a barrier layer (103) being deposited non-conformally in the trench-type depression (102), grain elements (104) being grown on the inner areas of the trench-type depression (102), a dielectric layer (202) being deposited on the surfaces of the grain elements and the inner areas of the trench-type depression, and a conduction layer being deposited on the dielectric layer, the grain elements (104) growing selectively on the inner areas (105) of the trench-type depression (102) in an electrode region (301) forming a lower region of the trench-type depression (102) and an amorphous silicon layer continuing to grow in a collar region (302) forming an upper region of the trench-type depression (102).
摘要:
A semiconductor device includes a drift region in a first region of a semiconductor body. The drift region includes dopants of a first conductivity type. A dopant retarding region is formed at least adjacent an edge of the drift region. Dopants of a second conductivity type are implanted into the semiconductor body. The semiconductor body is annealed to form a body region so that dopants of the second conductivity type are driven into the semiconductor body at a first diffusion rate. The dopant retarding region prevents the dopants from diffusing into the drift region at the first diffusion rate.
摘要:
An semiconductor device is disclosed. The device includes a semiconductor body, a layer of insulating material disposed over the semiconductor body, and a region of gate electrode material disposed over the layer of insulating material. Also included are a source region adjacent to gate region and a drain region adjacent to the gate region. A gate connection is disposed over the semiconductor body, wherein the gate connection includes a region of gate electrode material electrically coupling a contact region to the gate electrode. An insulating region is disposed on the semiconductor body beneath the gate connection.