Abstract:
Methods and/or apparatuses for treating sleep-disordered breathing (SDB) are provided. In particular, systems and/or methods are provided which may temporarily boost the pressure of a supply of breathable gas provided by an AutoSet device for the treatment of hypopnea. In certain example embodiments, a supply of breathable is provided to patients to treat apneas and/or hypopneas. The presence and/or absence of apneas and/or hypopneas are detected (e.g. by monitoring the Apnea-Hypopnea Index). When hypopnea events are detected, the pressure of the supply of breathable gas temporarily is increased above the Pcrit and/or CPAP levels, at least during patient inspiration. When the hypopnea events are normalized, the pressure is reduced. In certain example embodiments, the pressure will not be increased when a non-hypopnea event is detected at the same time as a hypopnea event.
Abstract:
A method of acclimatizing a user to provide continuous positive airway pressure (CPAP) therapy, including operating a device for treating sleep disordered breathing (SDB) during successive treatment sessions, wherein the device provides continuous positive airway pressure during sleep, includes determining a clinically-derived full therapeutic pressure, applying a sub-therapeutic treatment pressure for the duration of a first session, obtaining responses to a series of pre-programmed patient and/or bed partner feedback questions before the start of a second session, and, based on the responses, either incrementally increasing the treatment pressure for the second session if the responses indicate that the patient is adjusting to therapy, or maintaining the treatment pressure for the second session if the responses do not indicate that the patient is adjusting to therapy.
Abstract:
The present invention discloses an adjustable forehead support for a nasal or full-face mask wherein the forehead support may be adjusted for the different shapes and sizes of a facial profile. The forehead support utilizes a dual-arm system that adjusts the position of the forehead support vis-á-vis the mask and/or airflow tube. The angle of the mask to the face may be adjusted with the present invention.
Abstract:
An air delivery system for providing a supply of air from a source of air at positive pressure to an interfacing structure located at the entrance to the airways of a patient includes a manifold adapted to connect with the supply of positive air pressure and at least one tube connected to the manifold and adapted to deliver the supply of air to the interfacing structure. Each tube is structured to allow movement between an open phase in which the tube allows the passage of air and a collapsed phase in which the tube is collapsed. Each tube is structured such that weight of a typical patient's head against bedding apparel is sufficient to collapse the tube from the open phase to the collapsed phase.
Abstract:
A flow generator for generating a flow of pressurized breathable gas includes a cylindrical housing and a motor supported in the housing. The motor has a shaft having a first end and a second end opposite the first end. The shaft is generally coincident with an axis of the motor. A first impeller is attached to the first end of the shaft and a second impeller is attached to the second end of the shaft. A stator directs an air flow from the first impeller back towards the motor axis. The housing includes an inlet adjacent the first end of the shaft having an inlet axis generally coincident with the motor axis and at least one outlet between the first and second impellers. The at least one outlet has an outlet axis generally tangential to the motor axis. An apparatus for delivering a flow of pressurized breathable gas to a patient includes a flow generator and a casing to contain the flow generator. The casing is configured to engage a part of the patient's body, for example the top of the patient's head, and/or to receive a strap adapted to encircle, for example, the patient's arm or chest. The apparatus further includes at least one delivery conduit to convey the flow of pressurized breathable gas and a patient interface to receive the flow of pressurized breathable gas from the at least one delivery conduit and deliver it to the patient's airways.
Abstract:
A method and apparatus for humidifying breathable gas provided to a user includes providing a breathable gas, producing moisture or water derived from ambient environmental surroundings, e.g., via condensation and/or dehumidified air, and directing the breathable gas along an air flow path. The air flow path optionally includes access to at least a portion of the moisture or water for increased humidification of the breathable gas, for delivery to the user.
Abstract:
A respiratory mask, a mould for a respiratory mask, as well as to a method for producing a respiratory mask are disclosed, in which manufacturability and usability of respiratory masks are improved. A respiratory mask is disclosed for administering a breathable gas to a patient, the respiratory mask comprising a first component formed from a flexible material and a second component formed from a material that is more rigid than the flexible material, wherein the first component is formed onto the second component by an overmoulding process.
Abstract:
A respiratory mask includes a mask frame and a forehead support provided to the mask frame. The forehead support includes a base extending from the frame. The base includes a flexible portion along at least a portion of its length including a material and/or physical characteristic that allows the base to flex from an original, unloaded position.
Abstract:
A nasal cushion (30) comprises a substantially triangularly shaped frame (32) from which extends a membrane (34). The frame (32) has a scalloped edge (36) by which the cushion (30) is affixed to a mask body. The membrane (34) has an aperture (38) into which the wearer's nose is received. The membrane (34) is spaced away from the rim (40) of the frame (32), and its outer surface (41) is of substantially the same shape as the rim (40). Respective notches (42,44) receive the bridge of the wearer's nose. The wearer's nose is received through the aperture (38) into the chamber within the mask body (46). The seal forming portion (45) thus contacts both the surface of the wearer's nose and a portion of the wearer's face in the region between the base of the nose and the upper lip, and around the sides and over the bridge of the nose. The shape of the seal forming portion (45) is particularly suited to effectively seal the difficult region of the facial contour that is the crease between the sides of the nose and the face.