Abstract:
A ring or collar surrounding a semiconductor workpiece in a plasma chamber. According to one aspect, the ring has an elevated collar portion having an inner surface oriented at an obtuse angle to the plane of the workpiece, this angle preferably being 135°. This angular orientation causes ions bombarding the inner surface of the elevated collar to scatter in a direction more parallel to the plane of the workpiece, thereby reducing erosion of any dielectric shield at the perimeter of the workpiece, and ameliorating spatial non-uniformity in the plasma process due to any excess ion density near such perimeter. In a second aspect, the workpiece is surrounded by a dielectric shield, and the shield is covered by a non-dielectric ring which protects the dielectric shield from reaction with, or erosion by, the process gases. In a third aspect, the dielectric shield is thin enough to couple substantial power from the cathode to the plasma, thereby improving spatial uniformity of the plasma process near the perimeter of the workpiece. In a fourth aspect, azimuthal non-uniformities in process performance can be ameliorated by corresponding azimuthal variations in the dimensions of the elevated collar and/or the dielectric shield surrounding the workpiece.
Abstract:
A system substantially updates all the phase shifter values of a phased array antenna by using two “global writes” to update these parameters to all phased-array transformation circuits simultaneously via a serial bus. Antenna elements, each controlled by a phased-array transformation circuit, are individually configured to transform phase and gain according to a register array. The register array has a local register group and a central register group, the local registers physically placed close in proximity to RF chains which each correspond to an element of array antenna, whereby each set of local registers control an individual antenna element and a central register controlling overall beam steering function. Gain values are hierarchically distributed. The apparatus is configured to efficiently elaborate phase shift weights into a submodule of a phase array antenna system with low noise and bandwidth.
Abstract:
An array antenna system consists of layered construct of subarrays. Each beam pointing angle requires an antenna weight vector (AWV). A circuit tracks the changing orientation of a beam within a much larger virtual array of antenna weights. A row or column of a local RAM may be determined to be least likely to be read next and is overwritten with antenna weights more likely to be read next. An address translation circuit represents the RAM as a barrel. An adaptively adjusted antenna weight method optimizes received signal power. A beam splitting method provides a mirror beam pointing direction by wrapping around a look ahead table of antenna weight vectors when an antenna is itself gyrating or when a remote transceiver is anticipated to transit the horizon.
Abstract:
Techniques are disclosed relating to handling page faults created by a processor unit. In some embodiments, such techniques may be used within the context of graphics processor units (GPUs) to reduce the chances that a page fault will result in a GPU-pipeline stall. In one embodiment, a processor includes a graphics processor pipeline and a memory management unit. The graphics processor pipeline includes a plurality of pipeline stages. The memory management unit is configured to determine that a first data request from a first of the plurality of pipeline stages causes a page fault, and to service requests from one or more others of the plurality of pipeline stages while the page fault is being serviced.
Abstract:
An antenna unit is provided. The antenna unit includes a first substrate, a first conductive layer, a second conductive layer, a first planar conductive ring and a feed conductor. The first substrate includes a first surface and a second surface, wherein the first surface is opposite to the second surface. The first conductive layer is disposed on the first surface. The second conductive layer is disposed on the second surface, wherein a main opening surrounded by a plurality of first conductive vias electrically connecting the first and the second conductive surface is formed on the second conductive layer, and the main opening defines a radiation cavity and center frequency. The first planar conductive ring surrounds the radiation cavity. The feed conductor feeds a wireless signal to the antenna unit. Both the first planar conductive ring and the feed conductor are placed between the first conductor layer and the second conductor layer.
Abstract:
There is described a convertiplane comprising: a pair of semi-wings; at least two rotors which may rotate about relative first axes and tilt about relative second axes together with first axis with respect to semi-wings between a helicopter mode and an aeroplane mode; first axis being, in use, transversal to a longitudinal direction of convertiplane in helicopter mode, and being, in use, substantially parallel to longitudinal direction in aeroplane mode; convertiplane further comprises at least two through openings within which said rotor may tilt, when said convertiplane moves, in use, between said helicopter and said aeroplane mode.
Abstract:
A method of treating a cellular proliferative disorder with cancer antigen-activated dendritic cells that are derived from a population of somatic stem cells. Also disclosed are methods of treating tissue damages and degenerative diseases with a population of somatic stem cells.
Abstract:
Methods and apparatuses for utilizing a cache hint mechanism in which a requesting agent can provide hints as to how data corresponding to a request should be cached in a system cache within a memory controller. The way the system cache responds to received requests is determined by the cache hint provided by the originating requesting agent. When a request is accompanied by a de-allocate cache hint, the system cache causes a cache line hit by the request to be de-allocated. For a request with a do not allocate cache hint, the system cache does not allocate a cache line if the request misses in the system cache, and the system cache maintains a given cache line in its current state if the requests hits the given cache line.
Abstract:
Methods and apparatuses for implementing a system cache with quota-based control. Quotas may be assigned on a group ID basis to each group ID that is assigned to use the system cache. The quota does not reserve space in the system cache, but rather the quota may be used within any way within the system cache. The quota may prevent a given group ID from consuming more than a desired amount of the system cache. Once a group ID's quota has been reached, no additional allocation will be permitted for that group ID. The total amount of allocated quota for all group IDs can exceed the size of system cache, such that the system cache can be oversubscribed. The sticky state can be used to prioritize data retention within the system cache when oversubscription is being used.
Abstract:
In one embodiment, a memory that is delineated into transparent and non-transparent portions. The transparent portion may be controlled by a control unit coupled to the memory, along with a corresponding tag memory. The non-transparent portion may be software controlled by directly accessing the non-transparent portion via an input address. In an embodiment, the memory may include a decoder configured to decode the address and select a location in either the transparent or non-transparent portion. Each request may include a non-transparent attribute identifying the request as either transparent or non-transparent. In an embodiment, the size of the transparent portion may be programmable. Based on the non-transparent attribute indicating transparent, the decoder may selectively mask bits of the address based on the size to ensure that the decoder only selects a location in the transparent portion.