Abstract:
An integrated circuit includes a semiconductor substrate, an isolation region extending into, and overlying a bulk portion of, the semiconductor substrate, a buried conductive track comprising a portion in the isolation region, and a transistor having a source/drain region and a gate electrode. The source/drain region or the gate electrode is connected to the buried conductive track.
Abstract:
An integrated circuit comprises a first layer on a first level. The first layer comprises a set of first lines. The first lines each have a length and a width. The length of each of the first lines is greater than the width. The integrated circuit also comprises a second layer on a second level different from the first level. The second layer comprises a set of second lines. The second lines each have a length and a width. The length of each of the second lines is greater than the width. The integrated circuit further comprises a coupling configured to connect at least one first line of the set of first lines with at least one second line of the set of second lines. The coupling has a length and a width. The set of second lines has a pitch measured between the lines of the set of second lines in the first direction. The length of the first coupling is greater than or equal to the pitch.
Abstract:
An integrated circuit layout includes a first metal line, a second metal line, at least one first conductive via and a first conductive segment. The first metal line is formed along a first direction. The at least one first conductive via is disposed over the first metal line. The second metal line is disposed over at least one first conductive via and is in parallel with the first metal line. The first conductive segment is formed on one end of the second metal line.
Abstract:
A semiconductor device includes a substrate having an active region, a first gate structure over a top surface of the substrate, a second gate structure over the top surface of the substrate, a pair of first spacers on each sidewall of the first gate structure, a pair of second spacers on each sidewall of the second gate structure, an insulating layer over at least the first gate structure, a first conductive feature over the active region and a second conductive feature over the substrate. Further, the second gate structure is adjacent to the first gate structure and a top surface of the first conductive feature is coplanar with a top surface of the second conductive feature.
Abstract:
An integrated circuit is provided. The integrated circuit includes a first contact disposed over a first source/drain region, a second contact disposed over a second source/drain region, a polysilicon disposed over a gate, the polysilicon interposed between the first contact and the second contact, a first polysilicon contact bridging the polysilicon and the first contact within an active region, and an output structure electrically coupled to the first polysilicon contact.
Abstract:
An integrated circuit comprises a first layer on a first level. The first layer comprises a set of first lines. The first lines each have a length and a width. The length of each of the first lines is greater than the width. The integrated circuit also comprises a second layer on a second level different from the first level. The second layer comprises a set of second lines. The second lines each have a length and a width. The length of each of the second lines is greater than the width. The integrated circuit further comprises a coupling configured to connect at least one first line of the set of first lines with at least one second line of the set of second lines. The coupling has a length and a width. The set of second lines has a pitch measured between the lines of the set of second lines in the first direction. The length of the first coupling is greater than or equal to the pitch.
Abstract:
A post placement abutment treatment for cell row design is provided. In an embodiment a first cell and a second cell are placed in a first cell row and a third cell and a fourth cell are placed into a second cell row. After placement vias connecting power and ground rails to the underlying structures are analyzed to determine if any can be merged or else removed completely. By merging and removing the closely placed vias, the physical limitations of photolithography may be by-passed, allowing for smaller structures to be formed.
Abstract:
An integrated circuit (IC) device includes a circuit region, a lower metal layer over the circuit region, and an upper metal layer over the lower metal layer. The lower metal layer includes a plurality of lower conductive patterns elongated along a first axis. The upper metal layer includes a plurality of upper conductive patterns elongated along a second axis transverse to the first axis. The plurality of upper conductive patterns includes at least one input or output configured to electrically couple the circuit region to external circuitry outside the circuit region. The upper metal layer further includes a first lateral upper conductive pattern contiguous with and projecting, along the first axis, from a first upper conductive pattern among the plurality of upper conductive patterns. The first lateral upper conductive pattern is over and electrically coupled to a first lower conductive pattern among the plurality of lower conductive patterns.
Abstract:
A system (for generating a layout diagram of a wire routing arrangement) includes a processor and memory including computer program code for one or more programs, the system generating the layout diagram including: placing, relative to a given one of masks in a multi-patterning context, a given cut pattern at a first candidate location over a corresponding portion of a given conductive pattern in a metallization layer; determining that the first candidate location results in an intra-row non-circular group of a given row which violates a design rule, the intra-row non-circular group including first and second cut patterns which abut a same boundary of the given row, and a total number of cut patterns in the being an even number; and temporarily preventing placement of the given cut pattern in the metallization layer at the first candidate location until a correction is made which avoids violating the design rule.
Abstract:
A semiconductor device including a first oxide definition (OD) strip doped by a first-type dopant in a first doping region defining an active region of a first Metal-Oxide Semiconductor (MOS); a second OD strip doped by a second-type dopant in a second doping region and a third doping region, the second doping region defining an active region of a second MOS and the third doping region defining a body terminal of the first MOS, wherein the second OD is parallel to the first OD strip; and a first dummy OD strip, wherein a boundary between the second doping region and the third doping region is formed over the first dummy OD strip; wherein the first-type dopant is different from the second-type dopant.