Particle-drop structures and methods for making and using the same

    公开(公告)号:US11278881B2

    公开(公告)日:2022-03-22

    申请号:US17387990

    申请日:2021-07-28

    Abstract: Sub-millimeter scale three-dimensional (3D) structures are disclosed with customizable chemical properties and/or functionality. The 3D structures are referred to as drop-carrier particles. The drop-carrier particles allow the selective association of one solution (i.e., a dispersed phased) with an interior portion of each of the drop-carrier particles, while a second non-miscible solution (i.e., a continuous phase) associates with an exterior portion of each of the drop-carrier particles due to the specific chemical and/or physical properties of the interior and exterior regions of the drop-carrier particles. The combined drop-carrier particle with the dispersed phase contained therein is referred to as a particle-drop. The selective association results in compartmentalization of the dispersed phase solution into sub-microliter-sized volumes contained in the drop-carrier particles. The compartmentalized volumes can be used for single-molecule assays as well as single-cell, and other single-entity assays.

    System and method for optical transient liquid molding of microparticles and uses for the same

    公开(公告)号:US11060541B2

    公开(公告)日:2021-07-13

    申请号:US15763765

    申请日:2016-09-30

    Abstract: A method of forming three-dimensional shaped microparticles in a microfluidic device includes flowing a mixture of a monomer and photoinitiator in a microfluidic channel having a plurality of pillars disposed therein to define a flow stream having a pre-defined shape and temporarily stopping the same. One or more portions of the flow stream are polymerized by passing polymerizing light through one or more masks and onto the flow stream, the polymerization process forming a plurality of three-dimensional shaped microparticles. The three-dimensional shape of the microparticle may be geometrically complex by using non-rectangular 2D orthogonal shapes for the flow and/or masked light source. The microparticles may include protected regions on which cells can be adhered to and protected from shear forces. The flow stream is restarted to flush out the newly formed microparticles and prepare the device for the next cycle of particle formation.

    System and method for deforming and analyzing particles

    公开(公告)号:US10969327B2

    公开(公告)日:2021-04-06

    申请号:US16374663

    申请日:2019-04-03

    Abstract: A system for deforming and analyzing a plurality of particles carried in a sample volume includes a substrate defining an inlet, configured to receive the sample volume, and an outlet; and a fluidic pathway fluidly coupled to the inlet and the outlet. The fluidic pathway includes a delivery region configured to receive the plurality of particles from the inlet and focus the plurality of particles from a random distribution to a focused state, a deformation region defining an intersection located downstream of the delivery region and coupled to the outlet, and wherein the deformation region is configured to receive the plurality of particles from the delivery region and to transmit each particle in the plurality of particles into the intersection from a single direction, a first branch fluidly coupled to the deformation region and configured to transmit a first flow into the intersection, and a second branch fluidly coupled to the deformation region and configured to transmit a second flow, substantially opposing the first flow, into the intersection, wherein the first flow and the second flow are configured to induce extension of one or more particles in the plurality of particles.

    Particle focusing systems and methods

    公开(公告)号:US10690290B2

    公开(公告)日:2020-06-23

    申请号:US16276974

    申请日:2019-02-15

    Abstract: A particle focusing system includes an inlet; an inertial focusing microchannel disposed in a substrate and connected to the inlet; and a pressure/flow source configured to drive a particle-containing fluid through the inertial focusing microchannel, where the inertial focusing microchannel includes a side wall having an irregular surface. The side wall includes a first irregularity protruding from a baseline surface away from a longitudinal axis of the inertial focusing microchannel. Alternatively or additionally, the first irregularity and the baseline surface form an angle more than or equal to 135 degrees. The inertial focusing microchannel may have a substantially rectangular cross-section having a height and a width, and a ratio of height to width is approximately 5:4 to 4:1. The system may also include a downstream expanding region having a side wall, where the side wall has a stepped surface.

    PARTICLE FOCUSING SYSTEMS AND METHODS
    97.
    发明申请

    公开(公告)号:US20190178449A1

    公开(公告)日:2019-06-13

    申请号:US16276974

    申请日:2019-02-15

    CPC classification number: F17D1/00 G01N15/1404 G01N2015/1415 Y10T137/85978

    Abstract: A particle focusing system includes an inlet; an inertial focusing microchannel disposed in a substrate and connected to the inlet; and a pressure/flow source configured to drive a particle-containing fluid through the inertial focusing microchannel, where the inertial focusing microchannel includes a side wall having an irregular surface. The side wall includes a first irregularity protruding from a baseline surface away from a longitudinal axis of the inertial focusing microchannel. Alternatively or additionally, the first irregularity and the baseline surface form an angle more than or equal to 135 degrees. The inertial focusing microchannel may have a substantially rectangular cross-section having a height and a width, and a ratio of height to width is approximately 5:4 to 4:1. The system may also include a downstream expanding region having a side wall, where the side wall has a stepped surface.

    Method and device for high-throughput solution exchange for cell and particle suspensions

    公开(公告)号:US10226769B2

    公开(公告)日:2019-03-12

    申请号:US15785191

    申请日:2017-10-16

    Abstract: A method of exchanging fluids with suspended particles includes providing a microfluidic device with a first inlet channel operatively coupled to a source of particles and a second inlet channel operatively coupled to an exchange fluid. A transfer channel is connected at a proximal end to the first inlet channel and the second inlet channel. First and second outlet channels are connected to a distal end of the transfer channel. The source of particles is flowed at a first flow rate into the first inlet channel while the exchange fluid is flowed at a second flow rate into the second inlet channel wherein the ratio of the second flow rate to the first flow rate is at least 1.5. Particles are collected in one of the first and second outlet channels while fluid substantially free of particles is collected in the other of the first and second outlet channels.

    System and method for deforming and analyzing particles

    公开(公告)号:US10107735B2

    公开(公告)日:2018-10-23

    申请号:US15377659

    申请日:2016-12-13

    Abstract: A system for deforming and analyzing particles includes a substrate defining an inlet, and an outlet; a fluidic pathway fluidly coupled to the inlet and the outlet and defining a delivery region upstream of a deformation region configured to deform particles, wherein the fluidic pathway comprises a first branch configured to generate a first flow, and a second branch configured to generate a second flow that opposes the first flow, wherein an intersection of the first flow and the second flow defines the deformation region; a detection module including a sensor configured to generate a morphology dataset characterizing deformation of the particles, and a photodetector configured to generate a fluorescence dataset characterizing fluorescence of the particles; and a processor configured to output an analysis of the plurality of particles based at least in part on the deformation dataset and the fluorescent dataset for the plurality of particles.

Patent Agency Ranking