摘要:
An integrated circuit containing a voltage divider having an upper resistor of unsilicided gate material over field oxide around a central opening and a drift layer under the upper resistor, an input terminal coupled to an input node of the upper resistor adjacent to the central opening in the field oxide and coupled to the drift layer through the central opening, a sense terminal coupled to a sense node on the upper resistor opposite from the input node, a lower resistor with a sense node coupled to the sense terminal and a reference node, and a reference terminal coupled to the reference node. A process of forming the integrated circuit containing the voltage divider.
摘要:
An integrated circuit containing a diode with a drift region containing a first dopant type plus scattering centers. An integrated circuit containing a DEMOS transistor with a drift region containing a first dopant type plus scattering centers. A method for designing an integrated circuit containing a DEMOS transistor with a counter doped drift region.
摘要:
An integrated circuit containing a dual drift layer extended drain MOS transistor with an upper drift layer contacting a lower drift layer along at least 75 percent of a common length of the two drift layers. An average doping density in the lower drift layer is between 2 and 10 times an average doping density in the upper drift layer. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, using an epitaxial process. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, on a monolithic substrate.
摘要:
A process of forming an integrated circuit, including forming a dummy oxide layer for ion implanting low voltage transistors, replacing the dummy oxide in the low voltage transistor area with a thinner gate dielectric layer, and retaining the dummy oxide for a gate dielectric for a DEMOS or LDMOS transistor. A process of forming an integrated circuit, including forming a dummy oxide layer for ion implanting low voltage and intermediate voltage transistors, replacing the dummy oxide in the low voltage transistors with a thinner gate dielectric layer, replacing the dummy oxide in the intermediate voltage transistor with another gate dielectric layer, and retaining the dummy oxide for a gate dielectric for a DEMOS or LDMOS transistor.
摘要:
A method for manufacturing a semiconductor device that comprises implanting a first dopant type in a well region of a substrate to form implanted sub-regions that are separated by non-implanted areas of the well region. The method also comprises forming an oxide layer over the well region, such that an oxide-converted first thickness of the implanted sub-regions is greater than an oxide-converted second thickness of the non-implanted areas. The method further comprises removing the oxide layer to form a topography feature on the well region. The topography feature comprises a surface pattern of higher and lower portions. The higher portions correspond to locations of the non-implanted areas and the lower portions correspond to the implanted sub-regions.
摘要:
An integrated circuit containing an MOS transistor with a trenched gate abutting an isolation dielectric layer over a drift region. The body well and source diffused region overlap the bottom surface of the gate trench. An integrated circuit containing an MOS transistor with a first trenched gate abutting an isolation dielectric layer over a drift region, and a second trenched gate located over a heavily doped buried layer. The buried layer is the same conductivity type as the drift region. A process of forming an integrated circuit containing an MOS transistor, which includes an isolation dielectric layer over a drift region of a drain of the transistor, and a gate formed in a gate trench which abuts the isolation dielectric layer. The gate trench is formed by removing substrate material adjacent to the isolation dielectric layer.
摘要:
An electronic device has a plurality of trenches formed in a semiconductor layer. A vertical drift region is located between and adjacent the trenches. An electrode is located within each trench, the electrode having a gate electrode section and a field plate section. A graded field plate dielectric having increased thickness at greater depth is located between the field plate section and the vertical drift region.
摘要:
A dual channel JFET which can be integrated in an IC without adding process steps is disclosed. Pinch-off voltage is determined by lateral width of a first, vertical, channel near the source contact. Maximum drain voltage is determined by drain to gate separation and length of a second, horizontal, channel under the gate. Pinch-off voltage and maximum drain potential are dependent on lateral dimensions of the drain and gate wells and may be independently optimized. A method of fabricating the dual channel JFET is also disclosed.
摘要:
Cobalt silicide (CoSi2) Schottky diodes fabricated per the current art suffer from excess leakage currents in reverse bias. In this invention, an floating p-type region encircles each anode of a CoSi2 Schottky diode comprising of one or more CoSi2 anodes. The resulting p-n junction forms a depletion region under the Schottky junction that reduces leakage current through the Schottky diodes in reverse bias operation.
摘要:
An integrated circuit on a (100) substrate containing an n-channel extended drain MOS transistor with drift region current flow oriented in the direction with stressor RESURF trenches in the drift region. The stressor RESURF trenches have stressor elements with more than 100 MPa compressive stress. An integrated circuit on a (100) substrate containing an n-channel extended drain MOS transistor with drift region current flow oriented in the direction with stressor RESURF trenches in the drift region. The stressor RESURF trenches have stressor elements with more than 100 MPa compressive stress. An integrated circuit on a (100) substrate containing a p-channel extended drain MOS transistor with drift region current flow oriented in a direction with stressor RESURF trenches in the drift region. The stressor RESURF trenches have stressor elements with more than 100 MPa tensile stress.