Abstract:
Integrated circuits with phase-locked loops are provided. Phase-locked loops may include an oscillator, a phase-frequency detector, a charge pump, a loop filter, a voltage-controlled oscillator, and a programmable divider. The voltage-controlled oscillator may include multiple inductors, an oscillator circuit, and a buffer circuit. A selected one of the multiple inductors may be actively connected to the oscillator circuit. The voltage-controlled oscillators may have multiple oscillator circuits. Each oscillator circuit may be connected to a respective inductor, may include a varactor, and may be powered by a respective voltage regulator. Each oscillator circuit may be coupled to a respective input transistor pair in the buffer circuit through associated coupling capacitors. A selected one of the oscillator circuits may be turned on during normal operation by supplying a high voltage to the selected one of the oscillator circuit and by supply a ground voltage to the remaining oscillator circuits.
Abstract:
A loss-of-signal detector includes digital and analog monitoring of incoming data. The incoming signal is compared digitally to at least one predetermined pattern that may indicate a loss of signal, and also is monitored by an analog detector that detects transitions in the data. If the digital comparison fails to match any of the at least one predetermined pattern, or if transitions are detected by the analog monitoring, even if the digital comparison produces a pattern match, then loss of signal is not indicated.
Abstract:
Equalization of an incoming data signal can be controlled by sampling that signal at times when data values in that signal should be stable (“data samples”) and when that signal should be in transition between successive data values that are different (“transition samples”). A transition sample that has been taken between two successive differently valued data samples is compared to a reference value (which can be one of those two data samples). The result of this comparison can be used as part of a determination as to whether to increase or decrease equalization of the incoming data signal.
Abstract:
A PLD includes at least one IP block or circuit, and at least one I/O block or circuit. The performance of the at least one IP block is adjusted in order to meet at least one performance characteristic by changing a supply level of the at least one IP block, by adjusting at least one body bias level of the IP block, or both. The performance of the at least one I/O block is adjusted by changing a supply level of the at least one I/O block, by adjusting at least one body bias level of the I/O block, or both.
Abstract:
High-speed serial interface or transceiver circuitry on a programmable logic device integrated circuit (“PLD”) includes features that permit the PLD to satisfy a wide range of possible user needs or applications. This range includes both high-performance applications and applications in which reduced power consumption by the PLD is important. In the latter case, any one or more of various features can be used to help reduce power consumption.
Abstract:
High-speed serial data transceiver circuitry on a programmable logic device (“PLD”) includes some channels that are able to operate at data rates up to a first, relatively low maximum data rate, and other channels that are able to operate at data rates up to a second, relatively high maximum data rate. The relatively low-speed channels are served by relatively low-speed phase locked loop (“PLL”) circuitry, and have other circuit components that are typically needed for handling data that is transmitted at relatively low data rates. The relatively high-speed channels are served by relatively high-speed PLLs, and have other circuit components that are typically needed for handling data that is transmitted at relatively high data rates.
Abstract:
Systems and methods for adjusting a signal received from a communication path are disclosed. A receiver can receive a signal from a communication path which attenuates at least some frequency components of the signal. The receiver can include an equalization block that adjusts at least some of the frequency content of the received signal, a signal normalization block that provides a normalized signal amplitude and/or a normalized edge slope, and a control block. In one embodiment, the control block controls frequency adjustment in the equalization block for high frequencies but not for low frequencies. For low frequency adjustment, the control block controls the normalized signal amplitude in the signal normalization block. In this manner, controlled adjustment for low frequency content is performed in the signal normalization block.
Abstract:
An integrated circuit (e.g., a programmable integrated circuit such as a programmable microcontroller, a programmable logic device, etc.) includes programmable circuitry and 10 Gigabit Ethernet (10 GbE) transceiver circuitry. The programmable circuitry and the transceiver circuitry may be configured to implement the physical (PHY) layer of the 10GbE networking specification. This integrated circuit may then be coupled to an optical transceiver module in order to transmit and receive 10 GbE optical signals. The transceiver circuitry and interface circuitry that connects the transceiver circuitry with the programmable circuitry may be hard-wired or partially hard-wired.
Abstract:
In high speed receiver circuitry (e.g., on a programmable logic device (PLD) or the like), decision feedback equalization (DFE) circuitry is used to at least partly cancel unwanted offset (e.g., from other elements of the receiver). The data input to the receiver is tristated; and then each DFE tap coefficient is varied in turn to find coefficient values that are associated with transitions between oscillation and non-oscillation of the receiver output signal. The coefficient values found in this way are used to select trial values. If the output signal of the receiver does not oscillate when these trial values are used, the process is repeated starting from these (or subsequent) trial values until a final set of trial values does allow oscillation of the receiver output signal.
Abstract:
An impedance compensation circuit for inputs of a programmable device includes programmable impedance circuits connected with input nodes. The programmable impedance circuits can be configured to apply a compensating voltages to input nodes to reduce or eliminate unwanted offset voltages. An impedance compensation circuit may include resistors in series or current sources in parallel. A set of bypass switches selectively apply each resistor or current source to an input node, thereby changing the offset voltage of the node and compensating for impedance mismatches. Control logic provides signals to control the bypass switches. The control logic may be implemented using programmable device resources, enabling the control logic to be updated and improved after the manufacturing of the device is complete. The control logic can automatically evaluate offset voltages at any time and change compensating impedances accordingly. This reduces manufacturing costs and takes into account temperature and aging effects.