摘要:
A patient state is detected with at least one classification boundary generated by a supervised machine learning technique, such as a support vector machine. In some examples, the patient state detection is used to at least one of control the delivery of therapy to a patient, to generate a patient notification, to initiate data recording, or to evaluate a patient condition. In addition, an evaluation metric can be determined based on a feature vector, which is determined based on characteristics of a patient parameter signal, and the classification boundary. Example evaluation metrics can be based on a distance between at least one feature vector and the classification boundary and/or a trajectory of a plurality of feature vectors relative to the classification boundary over time.
摘要:
A charging system is disclosed. In one embodiment, the system includes a charging unit having a primary coil, and an implantable medical device comprising a secondary coil to receive charge from the primary coil. The implantable medical device further includes a half-wave voltage-doubling rectifier coupled to the secondary coil, a full-wave rectifier coupled to the secondary coil, and a rechargeable power source. Control logic is provided to periodically configure the rechargeable power source to receive charge from a selected one of the voltage-doubling circuit and the full-wave rectifier in a manner that increases rate at which charge is transferred from the secondary coil to the rechargeable power source. The control logic may configure the rechargeable power source to receive charge based on one or more monitored conditions which may include, for example, an indication of a current, a voltage, a coupling coefficient, back-scatter, and temperature.
摘要:
This disclosure describes a chopper-stabilized sigma-delta analog-to-digital converter (ADC). The ADC is configured to provide accurate output at low frequency with relatively low power. The chopper-stabilized ADC substantially reduces or eliminates noise and offset from an output signal produced by the mixer amplifier. Dynamic limitations, i.e., glitching that result from chopper stabilization at low power are substantially eliminated or reduced through a combination of chopping at low impedance nodes within the mixer amplifier and feedback. The signal path of the ADC operates as a continuous time system, providing minimal aliasing of noise or external signals entering the signal pathway at the chop frequency or its harmonics. In this manner, the chopper-stabilized ADC can be used in a low power system, such as an implantable medical device (IMD), to provide a stable, low-noise output signal.
摘要:
A therapy program is selected based on a patient state, where the patient state comprises at least one of a movement state, sleep state or speech state. In this way, therapy delivery is tailored to the patient state, which may include specific patient symptoms. The therapy program is selected from a plurality of stored therapy programs that comprise therapy programs associated with a respective one at least two of the movement, sleep, and speech states. Techniques for determining a patient state include receiving volitional patient input or detecting biosignals generated within the patient's brain. The biosignals are nonsymptomatic and may be incidental to the movement, sleep, and speech states or generated in response to volitional patient input.
摘要:
A movement state of a patient is detected based on brain signals, such as an electroencephalogram (EEG) signal. In some examples, a brain signal within a dorsal-lateral prefrontal cortex of a brain of the patient indicative of prospective movement of the patient may be sensed in order to detect the movement state. The movement state may include the brain state that indicates the patient is intending on initiating movement, initiating movement, attempting to initiate movement or is actually moving. In some examples, upon detecting the movement state, a movement disorder therapy is delivered to the patient. In some examples, the therapy delivery is deactivated upon detecting the patient is no longer in a movement state or that the patient has successfully initiated movement. In addition, in some examples, the movement state detected based on the brain signals may be confirmed based on a signal from a motion sensor.
摘要:
This disclosure describes a chopper-stabilized sigma-delta analog-to-digital converter (ADC). The ADC is configured to provide accurate output at low frequency with relatively low power. The chopper-stabilized ADC substantially reduces or eliminates noise and offset from an output signal produced by the mixer amplifier. Dynamic limitations, i.e., glitching that result from chopper stabilization at low power are substantially eliminated or reduced through a combination of chopping at low impedance nodes within the mixer amplifier and feedback. The signal path of the ADC operates as a continuous time system, providing minimal aliasing of noise or external signals entering the signal pathway at the chop frequency or its harmonics. In this manner, the chopper-stabilized ADC can be used in a low power system, such as an implantable medical device (IMD), to provide a stable, low-noise output signal.
摘要:
A method for evaluating a polymer molecule including linearly connected monomer residues includes providing a polymer molecule in a liquid, contacting the liquid with an insulating solid-state membrane having a detector capable of detecting polymer molecule characteristics, and causing the polymer molecule to traverse a limited region of the solid-state membrane so that monomers of the polymer molecule traverse the limit region in sequential order, whereby the polymer molecule interacts linearly with the detector and data suitable to determine polymer molecule characteristics are obtained. The limited region may be defined by a nanometer-sized aperture in the membrane.
摘要:
A micromachined variable capacitor structure is used as a modulation mechanism for a differential parametric amplifier. The capacitance of the capacitor structure is modulated by a control signal while a differential signal is applied to the capacitor structure. Modulation of the capacitance produces a signal representative of the input differential voltage. This signal is provided to an amplifier. Once the signal is amplified, a demodulator demodulates the amplified signal to provide an amplified version of the differential signal. The variable capacitor structure also allows for internal feedback, which permits the parametric amplifier to be used as a galvanically isolated differential measurement amplifier. A number of techniques are used to remove common mode and other errors from the modulated difference signal, thereby eliminating them from the amplified output.