Molecular and atomic scale evaluation of biopolymers
    1.
    发明授权
    Molecular and atomic scale evaluation of biopolymers 有权
    生物聚合物的分子和原子尺度评估

    公开(公告)号:US06627067B1

    公开(公告)日:2003-09-30

    申请号:US09602650

    申请日:2000-06-22

    IPC分类号: G01N27327

    摘要: A method for evaluating a polymer molecule including linearly connected monomer residues includes providing a polymer molecule in a liquid, contacting the liquid with an insulating solid-state membrane having a detector capable of detecting polymer molecule characteristics, and causing the polymer molecule to traverse a limited region of the solid-state membrane so that monomers of the polymer molecule traverse the limit region in sequential order, whereby the polymer molecule interacts linearly with the detector and data suitable to determine polymer molecule characteristics are obtained. The limited region may be defined by a nanometer-sized aperture in the membrane.

    摘要翻译: 包括线性连接的单体残基的聚合物分子的评估方法包括在液体中提供聚合物分子,使液体与具有能够检测聚合物分子特性的检测器的绝缘固态膜接触,并使聚合物分子穿过有限的 区域,使得聚合物分子的单体按顺序横穿极限区域,由此聚合物​​分子与检测器线性相互作用,并获得适合于确定聚合物分子特性的数据。 有限区域可以由膜中的纳米尺寸的孔限定。

    Nanotube processing employing solid-condensed-gas-layers
    3.
    发明授权
    Nanotube processing employing solid-condensed-gas-layers 有权
    采用固体冷凝气层的纳米管加工

    公开(公告)号:US08273257B2

    公开(公告)日:2012-09-25

    申请号:US12409580

    申请日:2009-03-24

    IPC分类号: C23C14/34 B82B3/00

    摘要: In a method for processing a nanotube, a vapor is condensed to a solid condensate layer on a surface of the nanotube and then at least one selected region of the condensate layer is locally removed by directing a beam of energy at the selected region. The nanotube can be processed with at least a portion of the solid condensate layer maintained on the nanotube surface and thereafter the solid condensate layer removed. Nanotube processing can include, e.g., depositing a material layer on an exposed nanotube surface region where the condensate layer was removed. After forming a solid condensate layer, an electron beam can be directed at a selected region along a nanotube length corresponding to a location for cutting the nanotube, to locally remove the condensate layer at the region, and an ion beam can be directed at the selected region to cut the nanotube at the selected region.

    摘要翻译: 在用于处理纳米管的方法中,蒸汽被冷凝到纳米管表面上的固体冷凝物层,然后通过在所选择的区域引导能量束来局部去除冷凝物层的至少一个选定区域。 纳米管可以用保持在纳米管表面上的固体冷凝物层的至少一部分进行处理,然后除去固体冷凝物层。 纳米管加工可以包括例如在去除冷凝物层的暴露的纳米管表面区域上沉积材料层。 在形成固体冷凝物层之后,电子束可以沿着与用于切割纳米管的位置相对应的纳米管长度的选定区域被引导,以在该区域局部移除冷凝物层,并且离子束可以被引导到所选择的 区域以在所选择的区域切割纳米管。

    Controlled fabrication of gaps in electrically conducting structures
    4.
    发明授权
    Controlled fabrication of gaps in electrically conducting structures 有权
    控制导电结构间隙的制造

    公开(公告)号:US07582490B2

    公开(公告)日:2009-09-01

    申请号:US10767102

    申请日:2004-01-29

    摘要: A method for controlling a gap in an electrically conducting solid state structure provided with a gap. The structure is exposed to a fabrication process environment conditions of which are selected to alter an extent of the gap. During exposure of the structure to the process environment, a voltage bias is applied across the gap. Electron tunneling current across the gap is measured during the process environment exposure and the process environment is controlled during process environment exposure based on tunneling current measurement. A method for controlling the gap between electrically conducting electrodes provided on a support structure. Each electrode has an electrode tip separated from other electrode tips by a gap. The electrodes are exposed to a flux of ions causing transport of material of the electrodes to corresponding electrode tips, locally adding material of the electrodes to electrode tips in the gap.

    摘要翻译: 一种用于控制具有间隙的导电固态结构中的间隙的方法。 该结构暴露于制造工艺环境条件,其条件被选择以改变间隙的程度。 在将结构暴露于工艺环境中时,跨越间隙施加电压偏置。 在工艺环境暴露期间测量跨越间隙的电子隧道电流,并且基于隧道电流测量在工艺环境暴露期间控制工艺环境。 一种用于控制设置在支撑结构上的导电电极之间的间隙的方法。 每个电极具有通过间隙与其它电极尖端分离的电极头。 电极暴露于离子通量,导致电极的材料传输到相应的电极尖端,将电极的材料局部地添加到间隙中的电极尖端。

    Capture, recapture, and trapping of molecules with a nanopore
    5.
    发明授权
    Capture, recapture, and trapping of molecules with a nanopore 有权
    用纳米孔捕获,重新捕获和捕获分子

    公开(公告)号:US08273532B2

    公开(公告)日:2012-09-25

    申请号:US12286787

    申请日:2008-10-02

    摘要: In a molecular analysis system, there is provided a structure including a nanopore and first and second fluidic reservoirs. The two reservoirs are fluidically connected via the nanopore. A detector is connected to detect molecular species translocation of the nanopore, from one of the two fluidic reservoirs to the other of the two fluidic reservoirs. A controller is connected to generate a control signal to produce conditions at the nanopore to induce the molecular species to re-translocate the nanopore at least once after translocating the nanopore. This enables a method for molecular analysis in which a molecular species is translocated a plurality of times through a nanopore in a structure between two fluidic reservoirs separated by the structure.

    摘要翻译: 在分子分析系统中,提供了包括纳米孔和第一和第二流体储层的结构。 两个储存器通过纳米孔流体连接。 连接检测器以检测纳米孔的分子物质易位,从两个流体储存器中的一个到两个流体储存器中的另一个。 连接控制器以产生控制信号以在纳米孔上产生条件以诱导分子种类在易位纳米孔之后至少一次地转移纳米孔。 这使得分子分析方法能够通过分子物质在被结构分离的两个流体储存器之间的结构中的纳米孔中多次转位。

    Nanometric Material Having a Nanopore Enabling High-Sensitivity Molecular Detection and Analysis
    6.
    发明申请
    Nanometric Material Having a Nanopore Enabling High-Sensitivity Molecular Detection and Analysis 审中-公开
    具有纳米孔的纳米材料实现高灵敏度分子检测和分析

    公开(公告)号:US20120234679A1

    公开(公告)日:2012-09-20

    申请号:US13419383

    申请日:2012-03-13

    摘要: There is provided a substantially bare, self-supported single-layer graphene membrane including a nanopore extending through a thickness of the graphene membrane from a first to a second membrane surface opposite the first graphene membrane surface. A connection from the first graphene membrane surface to a first reservoir provides, at the first graphene membrane surface, a species in an ionic solution to the nanopore, and a connection from the second graphene membrane surface to a second reservoir is provided to collect the species and ionic solution after translocation of the species and ionic solution through the nanopore from the first graphene membrane surface to the second graphene membrane surface. An electrical circuit is connected on opposite sides of the nanopore to measure flow of ionic current through the nanopore in the graphene membrane.

    摘要翻译: 提供了基本上裸露的自支撑单层石墨烯膜,其包括从第一至第二膜表面延伸穿过石墨烯膜的厚度的纳米孔,所述第一膜表面与第一石墨烯膜表面相对。 从第一石墨烯膜表面到第一储存器的连接在第一石墨烯膜表面处提供离子溶液中的物质到纳米孔,并且提供从第二石墨烯膜表面到第二储存器的连接以收集物种 和离子溶液在物种和离子溶液通过纳米孔从第一石墨烯膜表面转移到第二石墨烯膜表面之后。 电路连接在纳米孔的相对侧,以测量通过石墨烯膜中的纳米孔的离子电流的流动。

    Nanotube Processing Employing Solid-Condensed-Gas-Layers
    8.
    发明申请
    Nanotube Processing Employing Solid-Condensed-Gas-Layers 有权
    使用固体 - 气相层的纳米管加工

    公开(公告)号:US20090179005A1

    公开(公告)日:2009-07-16

    申请号:US12409580

    申请日:2009-03-24

    IPC分类号: C23F1/00

    摘要: In a method for processing a nanotube, a vapor is condensed to a solid condensate layer on a surface of the nanotube and then at least one selected region of the condensate layer is locally removed by directing a beam of energy at the selected region. The nanotube can be processed with at least a portion of the solid condensate layer maintained on the nanotube surface and thereafter the solid condensate layer removed. Nanotube processing can include, e.g., depositing a material layer on an exposed nanotube surface region where the condensate layer was removed. After forming a solid condensate layer, an electron beam can be directed at a selected region along a nanotube length corresponding to a location for cutting the nanotube, to locally remove the condensate layer at the region, and an ion beam can be directed at the selected region to cut the nanotube at the selected region.

    摘要翻译: 在用于处理纳米管的方法中,蒸汽被冷凝到纳米管表面上的固体冷凝物层,然后通过在所选择的区域引导能量束来局部去除冷凝物层的至少一个选定区域。 纳米管可以用保持在纳米管表面上的固体冷凝物层的至少一部分进行处理,然后除去固体冷凝物层。 纳米管加工可以包括例如在去除冷凝物层的暴露的纳米管表面区域上沉积材料层。 在形成固体冷凝物层之后,电子束可以沿着与用于切割纳米管的位置相对应的纳米管长度的选定区域被引导,以在该区域局部移除冷凝物层,并且离子束可以被引导到所选择的 区域以在所选区域切割纳米管。

    Control of solid state dimensional features
    9.
    发明授权
    Control of solid state dimensional features 有权
    控制固态尺寸特征

    公开(公告)号:US06783643B2

    公开(公告)日:2004-08-31

    申请号:US10186105

    申请日:2002-06-27

    IPC分类号: C23C1434

    摘要: A solid state structure having a surface is provided and exposed to a flux, F, of incident ions under conditions that are selected based on: ∂ ∂ t ⁢ C ⁡ ( r , t ) = F ⁢   ⁢ Y 1 + D ⁢ ∇ 2 ⁢ C - C τ trap - F ⁢   ⁢ C ⁢   ⁢ σ C , where C is concentration of mobile adatoms at structure surface, r is vector surface position, t is time, T1 is number of adatoms created per incident ion, D is adatom diffusivity, &tgr;trap is average lifetime of an adatom before adatom annihilation occurs at a structure surface defect characteristic of structure material, and &sgr;C is cross-section for adatom annihilation by incident ions characteristic of selected ion exposure conditions. Ion exposure condition selection controls sputtering of the structure surface by incident ions to transport, within the structure including the structure surface, structure material to a feature location, in response to the ion flux exposure, to produce a feature substantially by locally adding structure material to the feature location.

    摘要翻译: 具有表面的固体结构被提供并暴露于入射离子的通量F,条件是基于以下条件选择:其中C是结构表面处的移动吸附原子的浓度,r是向量表面位置,t是时间,T1 是每个入射离子产生的吸附原子数,D是吸附原子扩散系数,tautrap是在结构材料的结构表面缺陷特征下发生吸附原子湮灭之前的吸收原子的平均寿命,σC是被选择的入射离子特征的吸附原子湮灭的横截面 离子暴露条件。 离子曝光条件选择控制通过入射离子对结构表面的溅射,以在包括结构表面的结构内将结构材料转移到特征位置,以响应于离子通量暴露而产生基本上通过局部添加结构材料的特征 功能位置。

    Nanometric material having a nanopore enabling high-sensitivity molecular detection and analysis

    公开(公告)号:US10564144B2

    公开(公告)日:2020-02-18

    申请号:US13419383

    申请日:2012-03-13

    IPC分类号: G01N33/487

    摘要: There is provided a substantially bare, self-supported single-layer graphene membrane including a nanopore extending through a thickness of the graphene membrane from a first to a second membrane surface opposite the first graphene membrane surface. A connection from the first graphene membrane surface to a first reservoir provides, at the first graphene membrane surface, a species in an ionic solution to the nanopore, and a connection from the second graphene membrane surface to a second reservoir is provided to collect the species and ionic solution after translocation of the species and ionic solution through the nanopore from the first graphene membrane surface to the second graphene membrane surface. An electrical circuit is connected on opposite sides of the nanopore to measure flow of ionic current through the nanopore in the graphene membrane.