摘要:
A method, apparatus and product for producing an advantaged cell growth surface. According to the present invention, a stream of plasma is comprised of activated gaseous species generated by a microwave source. This stream is directed at the surface of a polymer substrate in a controlled fashion such that the surface is imparted with attributes for cell adhesion far superior to that of untreated polymer or polymer treated by other known methods.
摘要:
The present invention is to provide a method of enhancement of electrical conductivity for conductive polymer by use of field effect control, wherein on the substrate, whose surface was treated with a field, was coated by a containing monomer or oligomer solution of conductive polymer, through a field mechanism a monomer or oligomer of conductive polymer can demonstrate the sequential order molecular structure layer on the substrate, on this molecular structure layer was coated by an available amount of oxidant to proceed the polymerization, it was subjected to a field during polymerization to form 3-dimensional order stacking structure in order to increase the functional characteristic and electrical conductivity for conductive polymer.
摘要:
A polymer film capacitor is provided, utilizing a metallized film formed by a first vacuum-formed plasma treated surface, a vacuum-deposited, first radiation polymerized acrylate monomer film having first and second surfaces, the first surface being disposed on the first plasma-treated surface of the polymer substrate, and a metal layer disposed on the second surface of the first polymerized film. The metallized film is wound into a capacitor.
摘要:
A hybrid film, comprising a first polymer film having a plasma-treated surface and a second polymer film having first and second surfaces, with the first surface of the second polymer film being disposed along the first plasma-treated surface of the first polymer film, has superior thermal and mechanical properties that improve performance in a number of applications, including food packaging, thin film metallized and foil capacitors, metal evaporated magnetic tapes, flexible electrical cables, and decorative and optically variable films. One or more metal layers may be deposited on either the plasma-treated surface of the substrate and/or the radiation-cured acrylate polymer. A ceramic layer may be deposited on the radiation-cured acrylate polymer to provide an oxygen and moisture barrier film. The hybrid film is produced using a high speed, vacuum polymer deposition process that is capable of forming thin, uniform, high temperature, cross-linked acrylate polymers on specific thermoplastic or thermoset films. Radiation curing is employed to cross-link the acrylate monomer. The hybrid film can be produced in-line with the metallization or ceramic coating process, in the same vacuum chamber and with minimal additional cost.
摘要:
A thermally-stable cationic photoinitiator capable of flash vaporization under vacuum and temperature conditions of an available flash-evaporation chamber is selected. The photoinitiator is mixed with a cation-polymerizable monomer and/or oligomer of interest and the mixture is flash evaporated and condensed in conventional manner as a film on a cold substrate. The resulting vacuum-deposited, homogeneous layer is cured with a high-energy radiation source that causes the cationic photoinitiator to liberate acidic species that catalyze the crosslinking of the monomer/oligomer compounds in its deposited film form. As a result of the homogeneous, pinhole-free nature of the vacuum deposition process, the thin-film polymer product does not suffer from the disadvantages attendant to prior-art atmospheric processes for cationically-cured polymers. In addition, because of the versatility afforded by vacuum deposition, hybrid films of such polymers with inorganic materials are also easily manufactured in-line during the same process.
摘要:
A thermally-stable cationic photoinitiator capable of flash vaporization under vacuum and temperature conditions of an available flash-evaporation chamber is selected. The photoinitiator is mixed with a cation-polymerizable monomer and/or oligomer of interest and the mixture is flash evaporated and condensed in conventional manner as a film on a cold substrate. The resulting vacuum-deposited, homogeneous layer is cured with a high-energy radiation source that causes the cationic photoinitiator to liberate acidic species that catalyze the crosslinking of the monomer/oligomer compounds in its deposited film form. As a result of the homogeneous, pinhole-free nature of the vacuum deposition process, the thin-film polymer product does not suffer from the disadvantages attendant to prior-art atmospheric processes for cationically-cured polymers. In addition, because of the versatility afforded by vacuum deposition, hybrid films of such polymers with inorganic materials are also easily manufactured in-line during the same process.
摘要:
Methods and apparatus for plasma modifying a substrate are disclosed along with associated techniques for applying coatings to the substrate. Particular utility has been found using a hollow cathode to generate the plasma along with magnetic focusing means to focus the plasma at the surface of a substrate.
摘要:
Herein provided are a polypropylene resin composition which comprises (A) a polypropylene, (B) an ethylene-propylene-diene terpolymeric rubber having a Mooney viscosity, ML.sub.1+4 (100.degree. C.), ranging from 5 to 50 and an iodine value of not less than 15, the content of the component (B) ranging from 10 to 50% by weight on the basis of the total weight of the components (A) and (B), and optionally (C) an inorganic filler in an amount ranging from 0 to 40 parts by weight per 100 parts by weight of the sum of the components (A) and (B); a coating method which comprises the steps of applying a primer coating to a molded product obtained by molding the foregoing polypropylene resin composition or irradiating the molded product with plasma without degreasing and washing the product with a halogen atom-containing organic solvent and then applying a top coat to the product; and a coating method which comprises the steps of degreasing and washing a molded product obtained by molding the foregoing polypropylene resin composition and then applying a top coat to the product without applying a primer coating to the molded product or irradiating the molded product with plasma. The coated film obtained according to the foregoing methods has good bond strength to the molded product.
摘要:
Method and apparatus for making thermoplastic web from polyester or polyester blends for subsequent aqueous coating without requirement of an undercoat or primer coat for adhesion of subsequent coatings. Feedstock pellets of polymer, such as polyethylene terephthalate or polyethylene naphthalate, are melted in a screw extruder. Molten polymer is extruded from an extrusion die as a thick, high-viscosity ribbon, which is tempered and stretched in both the machine direction and the transverse direction to form a web of biaxially-oriented polymer of the desired width and thickness. The web is heated to a temperature above T.sub.g to set the biaxial orientation and then is glow discharge treated by passing it through an in-line glow discharge apparatus at atmospheric pressure wherein a stable glow discharge is produced in a gas mixture containing helium between two electrodes connected by an alternating power source operating at a voltage between 0.5 kV and 20 kV at a frequency between 60 Hz and 40 MHz. The web is coated with an aqueous gelatin subbing layer. The coated web then is maintained at elevated temperature. The combination of glow discharge treatment before sub coating and heat treatment after sub coating greatly enhances the adhesion of subsequently-coated aqueous gelatin layers such as photographic emulsions to the web, sufficiently that adhesion-promoting U-coat or primer coat as required in prior base-making methods can be omitted.
摘要:
The present invention is a method for treating a polyester support such as polyethylene naphthalate or polyethylene terephthalate. The treatment is carried out at atmospheric pressure in a gas of helium and optionally nitrogen and/or oxygen. The treatment uses metallic electrodes and an atmospheric glow discharge results when the electrodes are connected to a generator and spaced about 1 to 2 mm apart. The process and apparatus improve adhesion of subsequently coated emulsions on the polyester support at high speeds and relatively low power by selecting a frequency of 40 kHz to 500 kHz.