摘要:
The invention relates to fully human monoclonal antibodies, and fragments thereof, that bind to the chemokine Regulated upon Activation, Normal T-cell Expressed, and Secreted (RANTES, CCL5), thereby modulating the interaction between RANTES and one of more of its receptors, such as, e.g., CCR1, CCR3, CCR4 and CCR5, and/or modulating the biological activities of RANTES. The invention also relates to the use of these or any anti-RANTES antibodies in the prevention or treatment of immune-related disorders and in the amelioration of one or more symptoms associated with an immune-related disorder.
摘要:
Provided herein are antibodies that immunospecifically bind to an hLIGHT polypeptide; isolated nucleic acids encoding the antibodies; vectors and host cells comprising nucleic acids encoding the antibodies; methods of making the antibodies; and a method of treating a hLIGHT-mediated disease in a subject comprising administering to the subject the antibodies. In preferred embodiments, the anti-hLIGHT antibodies provided herein will ameliorate, neutralize or otherwise inhibit hLIGHT biological activity in vivo (e.g., the hLIGHT-mediated production or secretion of CCL20, IL-8 or RANTES from a cell expressing a hLIGHT receptor). Also provided herein is a method for the detection of hLIGHT in a sample as well as a method for ameliorating, neutralizing or otherwise inhibiting hLIGHT activity, e.g., in a human subject suffering from a disorder in which hLIGHT activity is detrimental.
摘要:
The present invention provides isolated monoclonal antibodies, particularly human antibodies, that bind to IP-10 with high affinity, inhibit the binding of IP-10 to its receptor, inhibit IP-10-induced calcium flux and inhibit IP-10-induced cell migration. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. The invention also provides methods for inhibiting IP-10 activity using the antibodies of the invention, including methods for treating various inflammatory and autoimmune diseases.
摘要:
The subject invention identifies CC chemokine ligand 20 (CCL20) as a novel biomarker for diagnosis of traumatic brain injury and/or neurodegeneration in the brain. The subject invention also provides treatment methods for traumatic brain injury and/or neurodegeneration in the brain by modulating systemic and/or brain-specific CCL20-CCR6 signaling. Also provided are uses of CCL20-CCR6 signaling a target for screening for therapeutic agents that are useful for treatment of traumatic brain injury.
摘要:
The present invention relates to monoclonal antibodies and antigen-binding portions thereof that specifically bind to the C-terminal or the center region of macrophage migration inhibitory factor (MIF). These anti-MIF antibodies and antigen-binding portions thereof further inhibit human MIF biological function. The invention also relates to isolated heavy and light chain immunoglobulins derived from anti-MIF antibodies and nucleic acid molecules encoding such immunoglobulins. The present invention also relates to a method of identifying anti-MIF antibodies, pharmaceutical compositions comprising these antibodies and a method of using these antibodies and compositions for the treatment of MIF-related conditions.
摘要:
One embodiment of the present invention relates to a pharmaceutical composition, which includes a therapeutically effective amount of at least one anti-MIF antibody; and at least one pharmaceutically acceptable carrier. Another embodiment of the present invention relates to a pharmaceutical composition, which includes a therapeutically effective amount at least one anti-CD74 antibody; and at least one pharmaceutically acceptable carrier. Another embodiment of the present invention relates to a pharmaceutical composition, which includes a therapeutically effective amount of at least one anti-TNFR antibody; a therapeutically effective amount of at least one anti-MIF antibody; and at least one pharmaceutically acceptable carrier. Other embodiments of the present invention relate to methods of treating or preventing cardiac dysfunction, cardiodepression, burn injury-associated cardiac dysfunction, improving cardiac function in a subject following acute myocardial infarction, and identifying an MIF inhibitor.
摘要:
The present invention relates to zcytor17lig polynucleotide, polypeptide and anti-zcytor17 antibody molecules. The zcytor17lig is a novel cytokine. The polypeptides may be used within methods for stimulating the immune system, and proliferation and/or development of hematopoietic cells in vitro and in vivo. The present invention also includes methods for producing the protein, uses therefor and antibodies thereto.
摘要:
The present invention relates to engineered multivalent and multispecific binding proteins, methods of making, and specifically to their uses in the prevention and/or treatment of acute and chronic inflammatory and other diseases.
摘要:
The present invention concerns antigen binding proteins and fragments thereof which specifically bind Oncostatin M (OSM), particularly human OSM (hOSM) and which inhibit the binding of OSM to the gp130 receptor but does not directly interact with site II residues. The invention also concerns a method of humanizing antibodies. Further disclosed are pharmaceutical compositions, screening and medical treatment methods.
摘要:
Disclosed is the novel myokine known as myonectin (CTRP15), an isolated nucleic acid encoding the myonectin (CTRP15) gene, and the amino acid sequence encoding the myonectin (CTRP15) protein. Methods of isolation of the nucleic acid, protein, polypeptides and methods of making antibodies to the myonectin (CTRP15) protein are provided. The use of myonectin (CTRP15) in the modulation of lipid and/or glucose metabolism, suppressing the expression of autophagy genes, inhibiting LC3 lipidation and autophagosome-dependent p62 degradation, and activating the Akt/mTOR pathway is also provided.