Abstract:
A hood lift mechanism for reversibly increasing the energy absorption capability at appropriate force levels of a vehicle hood includes a vehicle hood; an active material in operative communication with the vehicle hood, wherein the active material comprises a shape memory alloy, a ferromagnetic shape memory alloy, a shape memory polymer, a magnetorheological fluid, an electroactive polymer, a magnetorheological elastomer, an electrorheological fluid, a piezoelectric material, an ionic polymer metal composite, or combinations comprising at least one of the foregoing active materials; and an activation device in operative communication with the active material, wherein the activation device is operable to selectively apply an activation signal to the active material and effect a reversible change in a property of the active material, wherein the reversible change results in an increased clearance distance between the vehicle hood and an underlying component.
Abstract:
A container body with a lid hingedly joined thereto for movement about a pivot axis utilizing an elastomeric spring of generally ellipsoidal configuration extending transversely across the pivot axis and having opposed ends seated within the container body and lid, the spring folding centrally at the area of maximum thickness with the elastic deformation biasing the lid to its open position upon release of the closing force on the lid. The pivotal hinge assembly is enclosed by an integral transversely extending handle panel outward of the hinge assembly.
Abstract:
A hood lift mechanism for reversibly increasing the energy absorption capability at appropriate force levels of a vehicle hood includes a vehicle hood; an active material in operative communication with the vehicle hood, wherein the active material comprises a shape memory alloy, a ferromagnetic shape memory alloy, a shape memory polymer, a magnetorheological fluid, an electroactive polymer, a magnetorheological elastomer, an electrorheological fluid, a piezoelectric material, an ionic polymer metal composite, or combinations comprising at least one of the foregoing active materials; and an activation device in operative communication with the active material, wherein the activation device is operable to selectively apply an activation signal to the active material and effect a reversible change in a property of the active material, wherein the reversible change results in an increased clearance distance between the vehicle hood and an underlying component.
Abstract:
The invention is a door actuator and alignment apparatus for opening and closing the 15,000-pound horizontally sliding door of a storage overpack. The door actuator includes a ball screw mounted horizontally on a rigid frame including a pair of door panel support rails. An electrically powered ball nut moves along the ball screw. The ball nut rotating device is attached to a carriage. The carriage attachment to the sliding door is horizontally pivoting. Additional alignment features include precision cam followers attached to the rails and rail guides attached to the carriage.
Abstract:
A conductive hinge is made of a superelastic shape memory alloy such as nitinol (NiTi) having a large elastic strain limit for enabling the hinge to bend around a small radius during stowage and flexible return to a trained rigid hinge position. The hinge is conductive enabling use of the hinge as a conductor for routing power through multiple solar cell panels interconnected by the hinges forming a hinged solar cell array that is deployed when the hinges are released from the bent stowed configuration to the rigid deployed configuration when the hinges further function as latches to lock the panels in place.
Abstract:
An automobile door that is significantly easy to fabricate, enhanced in ease of assembling door components, and reduced in the number of parts to be mounted. The door comprises an outer panel and an inner panel. The inner panel is composed of a main panel made of metal and a resin-molded sub panel formed integrally with the main panel. The inner panel is formed with a mount on which door functional parts to be mounted on the door are mounted. The inner panel is also formed integrally with electrically connecting means for connecting these door functional parts with each other.
Abstract:
Release mechanism for releasing a door-spring blocked by a blocking device, which mechanism comprises a temperature-sensitive control element for direct thermal actuation, by means of which the mechanism intervenes in the blocking device at a predetermined temperature of that element such that the door-spring is released. The release mechanism comprises for instance a rod guided for movement in longitudinal direction between a first end position and a second end position under a first bias in the direction to this first end position, and a control element comprising an SME material which at the predetermined temperature encloses the rod under a second bias greater than the first and in opposite direction thereto, which rod is coupled to a control member of the blocking device, which control member keeps the blocking device in operation in the first end position of the rod and renders the blocking device inoperative in the second end position of the rod. The release mechanism may further comprise a control circuit.
Abstract:
An electric gear motor with reduction gears and automatic brake for shutters, wherein an emergency control is provided to allow the shutter to be manually maneuvered in the event of motor brake down or loss of power. A toothed ring is normally retained in a non-rotatable position relative to the reduction gears under the influence of a yieldable leg of a spring pin. The yieldable leg is movable away from the ring to permit the ring to rotate with the reduction gears and free of a motor drive shaft in the event the motor fails to activate in a normal manner thus enabling the shutters to be manually operated.