Abstract:
Nanoscale measurement of force, torque, and acceleration are provided. In one embodiment, a measurement apparatus includes a first plurality of nanoparticles coupled to a first substrate separated from a second plurality of nanoparticles coupled to a second substrate by a pillar disposed between the first substrate and the second substrate.
Abstract:
The present invention relates to a method of determining both pressures and temperatures in a high temperature environment. The present invention also relates to a method of determining temperatures about a pressure-sensing element using a bi-functional heater. In addition, the present invention preferably relates to a pressure sensor with the pressure-sensing element and a heating element both integrated into the sensor's packaging, preferably onto the diaphragm of the pressure sensor, and particularly to such a pressure sensor capable of operating at high or elevated temperatures, and even more particularly to such a pressure sensor wherein the heating element is capable of both heating, at least in part, the pressure-sensing element and monitoring the temperature of the application area. Preferably, the pressure-sensing element is formed from shape memory alloy (SMA) materials that can be used at high or elevated temperatures as a pressure sensor with high sensitivity.
Abstract:
An electroactive polymer is used to produce a tactile sensor. The electroactive polymer (EAP) includes a sheet of an ion-exchange membrane having opposite surfaces on which are plated gold electrodes. The EAP is formed to have a dome-shape with a plurality of sensing electrodes circumferentially disposed around an outer surface of the dome. A flexible polymer underlying the EAP supports it and prevents a force applied to the tactile sensor from inverting the dome. The sensor electrodes produce separate output signals indicative of different vector components of an applied force acting on the tactile sensor, so that a direction of the force can be determined. Vias provided in the electrodes are electrically coupled to a flexible circuit that conveys the output signals externally from the sensing electrodes for use and further processing. A plurality of the tactile sensors can be formed as an array on an ion-exchange membrane.
Abstract:
Disclosed herein are a force realization apparatus using a superconducting flux quantum, which is capable of generating force proportional to a flux quantum number by including a micron-sized superconducting annulus or superconducting quantum interference device in an ultra-sensitive cantilever, and a force measurer using the same. The quantum-based force realization apparatus includes: superconducting quantum trap means having a magnetic moment proportional to a flux quantum number; an ultra-sensitive cantilever which mounts therein the superconducting quantum trap means, has elasticity and is displaced by force generated by the superconducting quantum trap means located in a magnetic field gradient; and a magnetic field generator which applies a magnetic field to the superconducting quantum trap means.
Abstract:
There is disclosed a nanotube sensor which essentially employs a straight or twisted nanotube deposited on a supporting surface, such as silicon, silicon dioxide and some other semiconductor or metal material. The nanotube is basically a graphite device which is now subjected to stress causing the electrical characteristics of the nanotube to change according to stress. The nanotube is then provided in a circuit, such as a Wheatstone Bridge or other circuit, and the circuit will produce an output signal proportional to the change in electrical characteristics of the nanotube according to the applied force.
Abstract:
A semiconductor heterostructure based pressure switch comprising: first and second small bandgap material regions separated by a larger bandgap material region; a third small bandgap material region within the region of larger bandgap material, the third material region and larger bandgap material region defining at least one quantum dot; and, first and second electrodes electrically coupled to the first and second small bandgap material regions, respectively, wherein the electrodes are sufficiently proximate to said quantum dot to facilitate electron tunneling there between when a pressure is applied to the bandgap material defining the quantum dot.
Abstract:
There is disclosed a nanotube sensor which essentially employs a straight or twisted nanotube deposited on a supporting surface, such as silicon, silicon dioxide and some other semiconductor or metal material. The nanotube is basically a graphite device which is now subjected to stress causing the electrical characteristics of the nanotube to change according to stress. The nanotube is then provided in a circuit, such as a Wheatstone Bridge or other circuit, and the circuit will produce an output signal proportional to the change in electrical characteristics of the nanotube according to the applied force.
Abstract:
This invention provides a tunneling effect element that has versatility and that does not receive the effects of drift due to differences in the thermal-expansion coefficient of the lower and upper electrodes, and is not easily affected by external magnetic fields. The disclosed tunneling effect element 1 comprises: an insulating layer 11 that forms a tunneling barrier, a lower electrode 12 that is conductive and is formed on the bottom surface of the insulating layer 11, an upper electrode 13 that is conductive and is formed on the top surface of the insulating layer 11, and a transmission member 5 that is formed around the insulating layer 11, lower electrode 12 and upper electrode 13, and transmits the behavior of the object to be detected to the insulating layer 11.
Abstract:
A MOS transistor with a deformable gate formed in a semiconductor substrate, including source and drain areas separated by a channel area extending in a first direction from the source to the drain and in a second direction perpendicular to the first one, a conductive gate beam placed at least above the channel area extending in the second direction between bearing points placed on the substrate on each side of the channel area, and such that the surface of the channel area is hollow and has a shape similar to that of the gate beam when said beam is in maximum deflection towards the channel area.
Abstract:
An apparatus and method directed to a solid-state capacitance sensor for measuring a strain force on a dielectric having a corresponding dielectric constant includes at least one pair of electrodes disposed so as to interface with the dielectric. The sensor preferably includes a measuring circuit coupled to the electrodes to measure a change in the dielectric constant in response to the force. In operation, the change in the dielectric constant is caused by an electrostrictive response of the dielectric upon deformation. Preferably, the response is quantified by computing a change in the dielectric constant based on a measured change in capacitance. The electrodes may be fixed to the dielectric, and the measuring circuit determines the change in the dielectric constant by measuring a change in capacitance between the pair of electrodes and then computing the change in the dielectric constant. The force can then be computed based on both the change in dielectric constant and the electrostriction parameters associated with the dielectric.