Abstract:
A mobile robot can include an elongated body disposed in a vertical direction and having an approximately cylindrical shape; a user interface within an upper 20 centimeters of the body and inclined to be accessible from above and in front of the robot; at least one depth sensor that is mounted at or near a top of the body and having at least one field of view; at least one container formed within the body; and a drive mechanism disposed within the body.
Abstract:
A method, apparatus, and/or system for providing an action with respect to a mobile device using a robotic device that tracks the user and that interacts with a charging management engine. In accordance with at least one embodiment, a request to perform an action with respect to an electronic device is received. Information may be sent to one or more robotic devices within a proximity of the electronic device. A robotic device of the one or more robotic devices may be selected to perform the action. An indication may be received from the robotic device that indicates that the user has interacted with the robotic device. Instructions may be sent to the robotic device to perform the action with respect to the electronic device.
Abstract:
A method of localizing a mobile robot includes receiving sensor data of a scene about the robot and executing a particle filter having a set of particles. Each particle has associated maps representing a robot location hypothesis. The method further includes updating the maps associated with each particle based on the received sensor data, assessing a weight for each particle based on the received sensor data, selecting a particle based on its weight, and determining a location of the robot based on the selected particle.
Abstract:
An indoor navigational system determines a location of a moveable object in an indoor area and displays this location to a user. The system includes an absolute position sensor coupled to a case attached to a moveable object including a motion sensor coupled to a case including a first magnetic field sensor configured to detect a polarity of a magnet as the magnet passes in proximity to the first magnetic field sensor, a code wheel having two or more magnets alternately oriented with north and south polarities facing toward the first magnetic sensor, the code wheel positioned to rotate in unison with a wheel of the moveable object, and encoder circuitry configured to determine an amount of rotation of the wheel of the moveable object based on an output of the first magnetic field sensor.
Abstract:
A self-propelled work apparatus includes a traveling unit, a work unit, and a user interface. The traveling unit moves in a self-propelled manner to a position near a user. The work unit performs predetermined work. The user interface adjusts a position of the traveling unit located near the user, in accordance with a motion of the user. The work unit starts the predetermined work when the user interface is activated in accordance with the user motion.
Abstract:
A mobile robot that includes a drive system, a controller in communication with the drive system, and a volumetric point cloud imaging device supported above the drive system at a height of greater than about one feet above the ground and directed to be capable of obtaining a point cloud from a volume of space that includes a floor plane in a direction of movement of the mobile robot. The controller receives point cloud signals from the imaging device and issues drive commands to the drive system based at least in part on the received point cloud signals.
Abstract:
Provided is an autonomous moving body including a recording unit that records in advance position information of a fixed obstacle whose position does not change, a detection unit that detects an obstacle likely to interfere with the autonomous moving body when moving through a moving path, a check unit that checks whether the detected obstacle is the fixed obstacle, a control unit that determines whether to clear away the obstacle when the check unit concludes that the obstacle is not the fixed obstacle, and an informing unit that outputs a signal requesting to clear away the obstacle when the control unit determines to clear away the obstacle.
Abstract:
The invention disclosed with this application is a autonomous mobile system comprising: a means of achieving mobility, a means of navigating, a means of providing autonomous power, and a means of providing general purpose computing.In some embodiments, the system comprises a base unit capable of sensing its environment and computing navigation instructions to direct the system to move to particular locations and execute particular functions, as directed by a set of programmed instructions.In some embodiments, a coupling exists on the base unit to attach additional structures and mechanisms. These structures may comprise a means for carrying packages or other items, robotic manipulators that can grab and move objects, interactive audio and video displays for telepresence applications, a means for serving food and drink, etc. These extensions may be designed to be detachable and interchangeable, or may be designed to be permanently attached to the base unit.
Abstract:
A robot having a signal sensor configured to measure a signal, a motion sensor configured to measure a relative change in pose, a local correlation component configured to correlate the signal with the position and/or orientation of the robot in a local region including the robot's current position, and a localization component configured to apply a filter to estimate the position and optionally the orientation of the robot based at least on a location reported by the motion sensor, a signal detected by the signal sensor, and the signal predicted by the local correlation component. The local correlation component and/or the localization component may take into account rotational variability of the signal sensor and other parameters related to time and pose dependent variability in how the signal and motion sensor perform. Each estimated pose may be used to formulate new or updated navigational or operational instructions for the robot.
Abstract:
A mobile human interface robot that includes a base defining a vertical center axis and a forward drive direction and a holonomic drive system supported by the base. The drive system has first, second, and third driven drive wheels, each trilaterally spaced about the vertical center axis and having a drive direction perpendicular to a radial axis with respect to the vertical center axis. The robot further includes a controller in communication with the holonomic drive system, a torso supported above the base, and a touch sensor system in communication with the controller. The touch sensor system is responsive to human contact. The controller issues drive commands to the holonomic drive system based on a touch signal received from the touch sensor system.