Abstract:
Systems and methods for backing up storage volumes are provided. One system includes a primary side, a secondary side, and a network coupling the primary and secondary sides. The secondary side includes first and second VTS including a cache and storage tape. The first VTS is configured to store a first portion of a group of storage volumes in its cache and migrate the remaining portion to its storage tape. The second VTS is configured to store the remaining portion of the storage volumes in its cache and migrate the first portion to its storage tape. One method includes receiving multiple storage volumes from a primary side, storing the storage volumes in the cache of the first and second VTS, migrating a portion of the storage volumes from the cache to storage tape in the first VTS, and migrating a remaining portion of the storage volumes from the cache to storage tape in the second VTS.
Abstract:
Plural storage devices are cascade connected via a network, and the remote copy is executed among the plural storage devices. The data transferred from the copy source are temporarily stored in the buffer. Upon completion of the data reception, the data in the buffer are output to the data storage unit collectively, and the data are transmitted to the network connected storage device as the copy destination.
Abstract:
A method, device, and computer program product for performing asynchronous remote copy verification is provided. An initial track-to-track comparison between a primary and a secondary volume pair is performed. A first predetermined time is waited for. Upon completion of the first predetermined time, a subsequent primary volume track-to-secondary volume track comparison is performed only on the noncompare tracks. A query is performed for determining whether all of the noncompare tracks have been resolved. If any of the noncompare tracks have not been resolved, a query is performed for determining if a predetermined number of iterations of the primary volume track-to-secondary volume track comparison have been performed, and an additional subsequent primary volume track-to-secondary volume track comparison is performed only on unresolved noncompare tracks.
Abstract:
In an embodiment, a data processing method comprises, in a computer executing a supervisor program: the supervisor program establishing a plurality of different memory access permissions comprising any combination of read, write, and execute permissions for one or more different regions of memory of a first domain; setting the memory access permissions of a first set of the regions of memory to execute only; in response to a request from a process to read or write a particular region of memory in the first set, performing one or more responsive actions that prevent the process from reading or modifying one or more instructions or one or more embedded immediate values of the particular region of memory. Embodiments provide selective access to executable memory.
Abstract:
A method, system, and computer readable medium for asynchronously processing write operation on a volume having copy-on-write snapshots. In one embodiment, the method comprises the steps of: updating a normal mirror with write data associated with a write operation for the volume; asynchronously copying the write data from an asynchronous mirror to at least one copy-on-write snapshot; and, once the at least one copy-on-write snapshot is updated, updating the asynchronous mirror with the write data from the normal mirror.
Abstract:
To inhibit the occurrence of communication failures in the system in which a secondary storage control apparatus acquires journal data from a primary storage control apparatus and writes the data to a secondary volume. The primary storage control apparatus comprises a command processing unit, a journal data creation unit, a journal data transfer unit which reads journal data to the secondary storage control apparatus, and a transfer control unit. In specified occasions, the transfer control unit controls at least either one of the journal data transfer amount by the journal data transfer unit and the width of the communication band utilized for journal data transfer.
Abstract:
A method for storing data and two sets of distributed mirrored data disposed as data stripes which permits data recovery without the necessity of parity calculations, is described. Redundant data are stored in groups of five physical hard drives which are logically segmented into stripe groups, each stripe group having three data stripe sets wherein one data stripe is protected by two distributed mirror stripes in accordance with an algorithm. The present method provides protection for all one- and two-disk failures and certain three-disk drive failures, for each physical five disk group, and retains a usable disk capacity of 33%.
Abstract:
The storage devices of a storage device set (e.g., a RAID array) may generate a nonvolatile representation of the configuration of the storage device set, including logical disks, spaces, storage pools, and layout and provisioning plans, on the physical media of the storage devices. A computer accessing the storage device set may also generate a volatile memory representation of the storage device set to use while accessing the storage devices; however, the nonvolatile representation may not be performant due to its different usage and characteristics. Presented herein are techniques for accessing the storage device set according to a volatile memory representation comprising a hierarchy of logical disks, slabs, and extents, and an accessor comprising a provisioning component that handles slab accesses while applying provisioning plans, and that interfaces with a lower-level layout component that translates slab accesses into storage device accesses while applying layout plans to the storage device set.
Abstract:
A method, device, and computer program product for performing asynchronous remote copy verification is provided. An initial track-to-track comparison between a primary and a secondary volume pair is performed. Differences between primary and secondary volume tracks are recorded as noncompare tracks. A first predetermined time is waited for. A subsequent track-to-track comparison of the noncompare tracks is performed.
Abstract:
In a previous storage apparatus, differential JNLs are reflected in order of the update numbers, to the data volumes thereof. If a first storage apparatus is suspended, it is determined which is newer: the update number which the journal recently reflected in a second storage apparatus or the update number reflected in a third storage apparatus. In the newer storage apparatus having the newer update number, it is determined whether one or more JNLs from the journal having the update number next to the update number which is not determined to be the newer to the journal having the update number determined to be the newer exist, or not. If the result of the determination is positive, from the newer storage apparatus to the previous storage apparatus which is not the newer of the second and the third storage apparatuses, one or more differential JNLs are copied.