Abstract:
An LC circuit section and a negative resistance section are provided for an LC-VCO. A pair of output terminals are provided for the LC circuit section and an inductor is connected between the output terminals, and two variable capacitors are connected in series to each other parallelly with the inductor. Further, the LC circuit section is provided with a pair of capacitors and a pair of switches that are connected between the capacitors and a ground potential and consist of NMOS transistors. Moreover, a switch that consists of the NMOS transistor is connected between a node, which is between one capacitor and one switch, and a node, which is between the other capacitor and the other switch, and the two nodes are connected to each other when the switch is closed.
Abstract:
When two oscillation signals are output from a common terminal through switching, to reduce attenuation of the oscillation signals, a dual-band oscillator includes a first oscillating transistor for generating an oscillation signal in a first frequency band; a first inductor for supplying power to a collector of the first oscillating transistor; a first switching element for switching the first oscillating transistor; a second oscillating transistor for generating an oscillation signal in a second frequency band; a second inductor for supplying power to a collector of the second oscillating transistor; a second switching element for switching the second oscillating transistor; and an output terminal for outputting the oscillation signal in the first frequency band or in the second frequency band. The first switching element is disposed between the first inductor and the output terminal, and the second switching element is disposed between the second inductor and the output terminal.
Abstract:
In one embodiment, the present invention includes methods and apparatus for providing initial control values to programmable load capacitors of an oscillator, such as that of a real time clock circuit. Using the initial values, the real time clock circuit may begin operation, enabling additional circuitry within an integrated circuit to begin operation. This additional circuitry may cause operating values to program the load capacitors to provide a desired reference clock based on a given system's requirements.
Abstract:
Methods and apparatus are presented for performing coarse frequency tuning in a voltage controlled oscillator. The methods and apparatus are directed towards the use of a new voltage controlled oscillator comprising both a binary coding module and a thermometer coding module. The combination of the binary coding module and the thermometer coding module control a capacitance corresponding to a resonant tank which is used to coarse tune the frequency of the voltage controlled oscillator.
Abstract:
An integrated VCO having an improved tuning range over process and temperature variations. There is therefore provided in a present embodiment of the invention an integrated VCO. The VCO comprises, a substrate, a VCO tuning control circuit responsive to a VCO state variable that is disposed upon the substrate, and a VCO disposed upon the substrate, having a tuning control voltage input falling within a VCO tuning range for adjusting a VCO frequency output, and having its tuning range adjusted by the tuning control circuit in response to the VCO state variable.
Abstract:
An integrated VCO having an improved tuning range over process and temperature variations. There is therefore provided in a present embodiment of the invention an integrated VCO. The VCO comprises, a substrate, a VCO tuning control circuit responsive to a VCO state variable that is disposed upon the substrate, and a VCO disposed upon the substrate, having a tuning control voltage input falling within a VCO tuning range for adjusting a VCO frequency output, and having its tuning range adjusted by the tuning control circuit in response to the VCO state variable.
Abstract:
A VCO circuit for a fractional-n PLL circuit is described for implementing a direct modulation scheme. An embodiment of the invention provides a bank of switchable capacitors used to stringently control the gain of the VCO (KVCO). The capacitors provide the stringent control necessary for direct modulation. The bank of switchable capacitors is used to coarsely tune the VCO circuit. A linear capacitor is placed in series with, the varactor to linearize the frequency/capacitance response of the varactor. The capacitor also serves to isolate a reference voltage that is used to bias the varactor diode to ensure the linear range of the varactor is within the voltage range of the VCO circuit power supply. The varactor is used for fine tuning of the VCO circuit. For one embodiment the input voltages to the VCO are across a resistance value sufficient to dampen noise picked up through an external loop filter.
Abstract:
A programmable capacitive network for use in a tunable resonant circuit is set forth that may be used in a number of different applications, but is particularly useful in the tuning of a voltage controlled oscillator formed on a substrate, such as a semiconductor substrate or the like. The programmable capacitive network includes a plurality of capacitive elements. An interconnected network of voltage gate elements and fuse elements are interconnected with the capacitive elements to selectively connect one or more of the plurality of capacitive elements in the resonant circuit in response to at least one program control signal. In accordance with one embodiment, the voltage gate elements are diodes.
Abstract:
A radio transmitter and/or receiver comprising: an oscillator tuning circuit comprising an adjustable capacitor whose capacitance is adjustable by means of a first tuning signal; a filter tuning circuit comprising an adjustable capacitor whose capacitance is adjustable by means of a second tuning signal; an oscillator whose operational frequency is dependant on the reactance of the oscillator tuning circuit; a filter for filtering signals in the course of transmission and/or reception, and whose response is dependant on the reactance of the filter tuning circuit; and a tuning unit for generating the first and second tuning signals; wherein at least a part of the filter tuning circuit is a replica of at least a part of the oscillator tuning circuit and the tuning circuit is capable of generating one of the first and second tuning signals in dependence on the other of the tuning signals.
Abstract:
An oscillator circuit with connectable capacitance makes it possible for the oscillator to change over between at least two frequencies. A switching unit is provided for the changeover. The switching unit has a first switch which is connected between the switchable capacitances, and also further switches, which are connected with respect to a supply voltage terminal. Compared with conventional oscillators that can be changed over, the novel circuit provides for the advantage that a particularly low forward resistance takes effect in the switched-on state of the connectable capacitances and particularly small parasitic capacitances nevertheless take effect in the switched-off state. The oscillator circuit can be implemented with a particularly small chip area since the switches can be integrated in a common transistor structure with a common control terminal. The oscillator circuit is particularly suitable for mobile radio applications.