Abstract:
An image scanning apparatus that forms an optical image of a document with an image-forming lens onto an image sensor. In order to prevent deterioration in image-forming performance, the image scanning apparatus includes a restricting member for restricting displacement of the image-forming lens in the direction of the optical axis. The restricting member is provided on a supporting member for supporting the image-forming lens and the image sensor.
Abstract:
A semiconductor device includes a semiconductor chip with a functional surface, a substrate opposing the functional surface of the semiconductor chip at a space formed between the substrate and the functional surface, a power supplying device electrically connected to a part of the functional surface of the semiconductor chip and separated by a slight gap from the substrate, a fixing member that fixes the semiconductor chip to the substrate, and a sealing member that seals the space formed between the substrate and the functional surface of the semiconductor chip other than a space formed between the substrate and the functional surface of the semiconductor chip that are fixed to each other through the fixing member and other than the gap formed between the power supplying device and the substrate. The sealing member has greater elasticity than the fixing member.
Abstract:
A semiconductor device includes a semiconductor chip with a functional surface, a substrate opposing the functional surface of the semiconductor chip at a space formed between the substrate and the functional surface, a power supplying device electrically connected to a part of the functional surface of the semiconductor chip and separated by a slight gap from the substrate, a fixing member that fixes the semiconductor chip to the substrate, and a sealing member that seals the space formed between the substrate and the functional surface of the semiconductor chip other than a space formed between the substrate and the functional surface of the semiconductor chip that are fixed to each other through the fixing member and other than the gap formed between the power supplying device and the substrate. The sealing member has greater elasticity than the fixing member.
Abstract:
The present invention provides a lamp tube support structure, which comprises a support piece for fixing a lamp tube. The lamp tube support structure comprises a first half and a second half. The first half has a gap. A clamping portion is formed at two extension ends of the gap. A guard ear is annularly disposed at the inner edge of the gap. Grooves are disposed at left and right ends of the second half. A wing portion is formed below the grooves. The wing portion can be jammed into a hole of a rack for supporting the lamp tube after being bent. The wing portion will elastically spring back to be erectly fixed on the rack. When the lamp tube is placed at the gap of the support piece, it will be fixedly supported on the rack.
Abstract:
A light-emitting unit 20 has a light-emitting unit board 21 made of resin provided with a lead frame 22. The light-emitting unit board 21 is also provided with an open window 21a for mounting a light-emitting device. The lead frame 22 comprises a lead terminal section 22a, an inner lead section 22c, and a light-emitting device mounting and connecting section 22b which is exposed within the open window 21a. The light-emitting devices 23a, 23b, and 23c are bonded with the light-emitting device mounting and connecting section 22b, and electrodes of the light-emitting devices and the lead frame are connected by a metal wire 24, wherein the open window 21a is sealed by transparent resin. The lead frame 22 is made of iron-containing copper to improve heat radiation performance of the light-emitting unit board. By increasing maximum current to be supplied to the light-emitting diodes, it is possible to increase illumination brightness and to attain speedup of image reading.
Abstract:
Disclosed is an image scanning unit which has: a CCD substrate which is mounted on a block; three groups of adjustment fastening members to position the CCD substrate in three dimensional directions orthogonal to one another; and a springy member to press each of the adjustment fastening members against receiving part of each of the adjustment fastening members; wherein the three groups of adjustment fastening members are of a first group of fastening members to conduct the focus adjustment by independently positioning the CCD substrate in a direction perpendicular to the plane of the CCD substrate at both ends of CCD in the longitudinal direction, a second group of fastening members to conduct the sub-scanning adjustment by independently positioning the CCD substrate in a direction orthogonal to the longitudinal direction of the CCD substrate within the plane of the CCD substrate at both ends of CCD in the longitudinal direction, and a third group of fastening member tot conduct the main-scanning adjustment by independently positioning the CCD substrate in a direction along the longitudinal direction of the CCD substrate within the plane of the CCD substrate.
Abstract:
An optical imaging assembly comprises a mounting surface and at least one semiconductor die having a face and an edge portion. The edge portion of the at least one semiconductor die is mounted to the mounting surface. A light sensitive optical detector is located on the face of the at least one semiconductor die. An optical system is mounted to the mounting surface adjacent the at least one semiconductor die.
Abstract:
There is provided a medical support arm device including a brake provided in at least one joint of a plurality of joints that define a deployment configuration of a multi-joint arm, and configured to release a rotation shaft of the at least one joint when electricity is supplied to the multi-joint arm and lock the rotation shaft when electricity is not supplied to the multi-joint arm. When electricity is not supplied the brake is configured to exert a brake force that supports a weight of the multi-joint arm to maintain the deployment configuration of the multi-joint arm, but also permits rotation of the rotation shaft by an external manually applied force equal to or larger than a predetermined value
Abstract:
A light guide includes a plurality of boss portions. A round hole portion is provided near the center of a base member for fixing the light guide, and slit portions are provided on both ends thereof. The round hole portion supports one boss portion in both the longitudinal direction and the lateral direction of the light guide. The slit portions support boss portions in the lateral direction of the light guide, but are free in the longitudinal direction of the light guide. That is, the center of the light guide is fixed from both directions, and thus both ends of the light guides can expand away in the longitudinal direction. This cuts the influence of expansion by half.
Abstract:
A contact image sensor unit includes: a light source (10) illuminating an original; a rod-like light guide (11) guiding light from the light source to the original; an imaging element (12) forming reflected light from the original on a plurality of photoelectric conversion elements; a sensor substrate (14) on which the plurality of photoelectric conversion elements are mounted; a frame (15) to which they are attached and which has a positioning part (200) for attaching the light guide (11) thereto; and a supporting member (16) which attachably/detachably supports the light guide (11) and is attachably/detachably attached to the positioning part (200). Since the light guide (11) can be attached to the frame (15) without using an adhesive, the deformation of the light guide (11), the warpage of the contact image sensor unit and so on can be prevented.