Abstract:
An image processing system which performs photography of the teeth of a patient while causing a plurality of illumination light LEDs of different wavelengths to emit light by means of a photography device when producing a crown repair or denture of the patient, whereby image data are acquired. The image data are transmitted to a dental filing system constituting a processing device where color reproduction data are determined through computation. In addition, color reproduction data are transmitted to the dental technician's office via a public switched network. A repair material compound ratio calculation database is searched and compound data for a material that matches the hue of the patient's teeth is retrieved, so that a crown repair or denture or the like that very closely matches the color of the patient's teeth can be produced.
Abstract:
A chemical imaging system is provided which uses a near infrared radiation microscope. The system includes an illumination source which illuminates an area of a sample using light in the near infrared radiation wavelength and light in the visible wavelength. A multitude of spatially resolved spectra of transmitted, reflected, emitted or scattered near infrared wavelength radiation light from the illuminated area of the sample is collected and a collimated beam is produced therefrom. A near infrared imaging spectrometer is provided for selecting a near infrared radiation image of the collimated beam. The filtered images are collected by a detector for further processing. The visible wavelength light from the illuminated area of the sample is simultaneously detected providing for the simultaneous visible and near infrared chemical imaging analysis of the sample. Two efficient means for performing three dimensional near infrared chemical imaging microscopy are provided.
Abstract:
The present invention discloses an optical measurement and/or inspection device that, in one application, may be used for inspection of semiconductor devices. It comprises a light source for providing light rays; a half-parabolic-shaped reflector having an inner reflecting surface, where the reflector having a focal point and an axis of summary, and a device-under-test is disposed thereabout the focal point. The light rays coming into the reflector that is in-parallel with the axis of summary would be directed to the focal point and reflect off said device-under-test and generate information indicative of said device-under-test, and then the reflected light rays exit said reflector. A detector receives the exited light rays and the light rays can be analyzed to determine the characteristics of the device-under-test.
Abstract:
A chemical imaging system is provided which uses a near infrared radiation microscope. The system includes an illumination source which illuminates an area of a sample using light in the near infrared radiation wavelength and light in the visible wavelength. A multitude of spatially resolved spectra of transmitted, reflected, emitted or scattered near infrared wavelength radiation light from the illuminated area of the sample is collected and a collimated beam is produced therefrom. A near infrared imaging spectrometer is provided for selecting a near infrared radiation image of the collimated beam. The filtered images are collected by a detector for further processing. The visible wavelength light from the illuminated area of the sample is simultaneously detected providing for the simultaneous visible and near infrared chemical imaging analysis of the sample. Two efficient means for performing three dimensional near infrared chemical imaging microscopy are provided.
Abstract:
A method and system to differentiate a tissue margins during various medical procedures. A region containing a biological tissue is irradiated, with a substantially monochromatic light. Raman spectroscopic data is obtained from the irradiated region. A boundary between a neoplastic portion and a non-neoplastic portion, in the region containing the biological tissue, is differentiated by evaluating the Raman spectroscopic data for at least one Raman spectroscopic value characteristic of either the neoplastic portion or the non-neoplastic portion. The neoplastic portion is selected for physical manipulation based on the differentiation of the boundary between the neoplastic portion and the non-neoplastic portion.
Abstract:
Apparatus and methods for spatially resolved Raman chemical imaging of breast tissue is disclosed. A region of breast tissue is illuminated with monochromatic light. A spatially organized area of endogenous molecules in the tissue is then detected in the region by detecting a Raman shifted light signal. The Raman shifted light signal is spatially resolved in at least one direction and is thus useful for examining breast tissue, especially to detect malignant tissue.
Abstract:
A method and apparatus for providing an integrating sphere for use as a measuring device is described. More specifically, the integrating sphere includes a generally spherical shell and a liner disposed within said generally spherical shell, wherein the liner is composed of a sintered polymer. In one embodiment, the liner is made up of a pre-formed polytetrafluoroethylene (PTFE) shell.
Abstract:
Scene intensity measuring and illumination source detection apparatus for determining scene illuminant and appropriate exposure settings for an image capture device is disclosed. The apparatus includes a diffractive optical element including an off-axis segment for dispersing incident scene illumination into its spectral components and for focusing the incident scene illumination, a structure responsive to the spectral intensities of the spectral components of the incident scene illumination for producing detection signals corresponding to such spectral components, a structure coupled to the sensing means for producing digitized detection signals, and a structure responsive to the digitized detection signals for determining the scene illuminant and the appropriate exposure settings for the image capture device.
Abstract:
Described herein is a method and apparatus for identifying image-forming material type, particularly photographic material types. The method comprises illuminating a sample of the material at a plurality of wavelengths and measuring the density at each of these wavelengths. The set of density values obtained are then used to determine the slope of the cyan dye curve between the magenta and cyan peaks. This slope can then be compared to data to identify the material.
Abstract:
A method is disclosed for the preparation of metal reference samples for spectrographic analysis. The method consists of producing a substantially cylindrical preform or blank by spray deposition, followed by the consolidation of the blank in the form of a bar having an appropriate diameter and finally the cutting of the reference samples therefrom. Compared with the prior art methods, the method offers the advantages of an improved chemical homogeneity and low oxygen content.