摘要:
A method and system to differentiate a tissue margins during various medical procedures. A region containing a biological tissue is irradiated, with a substantially monochromatic light. Raman spectroscopic data is obtained from the irradiated region. A boundary between a neoplastic portion and a non-neoplastic portion, in the region containing the biological tissue, is differentiated by evaluating the Raman spectroscopic data for at least one Raman spectroscopic value characteristic of either the neoplastic portion or the non-neoplastic portion. The neoplastic portion is selected for physical manipulation based on the differentiation of the boundary between the neoplastic portion and the non-neoplastic portion.
摘要:
System and method for differentiating tissue margins in a biological sample using pulsed laser excitation and time-gated detection. A region containing a biological tissue is irradiated with substantially monochromatic pulsed laser light to thereby produce Raman scattered photons. The Raman scattered photons are detected using time-gated detection to thereby obtain a Raman spectroscopic image from the irradiated region characteristic of either a neoplastic portion or a non-neoplastic portion of the region containing the biological tissue. A boundary between a neoplastic portion and a non-neoplastic portion is differentiated and the boundary location in the Raman spectroscopic image is displayed.
摘要:
System and method for differentiating tissue margins in a biological sample using pulsed laser excitation and time-gated detection. A region containing a biological tissue is irradiated with substantially monochromatic pulsed laser light to thereby produce Raman scattered photons. The Raman scattered photons are detected using time-gated detection to thereby obtain a Raman spectroscopic image from the irradiated region characteristic of either a neoplastic portion or a non-neoplastic portion of the region containing the biological tissue. A boundary between a neoplastic portion and a non-neoplastic portion is differentiated and the boundary location in the Raman spectroscopic image is displayed.
摘要:
System and method for differentiating tissue margins in a biological sample using pulsed laser excitation and time-gated detection. A region containing a biological tissue is irradiated with substantially monochromatic pulsed laser light to thereby produce Raman scattered photons. The Raman scattered photons are detected using time-gated detection to thereby obtain a Raman spectroscopic image from the irradiated region characteristic of either a neoplastic portion or a non-neoplastic portion of the region containing the biological tissue. A boundary between a neoplastic portion and a non-neoplastic portion is differentiated and the boundary location in the Raman spectroscopic image is displayed.
摘要:
A method and system to differentiate a tissue margins during various medical procedures. A region containing a biological tissue is irradiated, with a substantially monochromatic light. Raman spectroscopic data is obtained from the irradiated region. A boundary between a neoplastic portion and a non-neoplastic portion, in the region containing the biological tissue, is differentiated by evaluating the Raman spectroscopic data for at least one Raman spectroscopic value characteristic of either the neoplastic portion or the non-neoplastic portion. The neoplastic portion is selected for physical manipulation based on the differentiation of the boundary between the neoplastic portion and the non-neoplastic portion.
摘要:
A system and method to automatically obtain spectra for samples. The method involves a two phase process including a photobleaching phase and a spectral acquisition phase. In the photobleaching phase, a series of spectral data sets of a sample are collected. A relative difference is determined between the background of subsequent spectral data sets is determined and compared to a predetermined threshold value. If threshold difference is less than the relative difference between the background of subsequent spectral data sets, the steps of collecting a series of spectra data sets is automatically repeated. In the spectrum acquisition phase, a series of Raman data sets of the sample are collected until a target SNR is obtained.
摘要:
The embodiments disclosed herein generally relate to identifying and removing background noise in spectroscopic imaging of a sample. Because white-light has essentially constant intensity at every wavelength, background noise caused by white light can be identified and removed from spectroscopic measurements including Raman spectroscopy. Thus, once the Raman spectrum for a sample is obtained, it may be corrected to remove the white-light dispersive spectrum in accordance with the embodiments disclosed herein.
摘要:
A system and method to automatically obtain spectra for samples. The method involves a two phase process including a photobleaching phase and a spectral acquisition phase. In the photobleaching phase, a series of spectral data sets of a sample are collected. A relative difference is determined between the background of subsequent spectral data sets is determined and compared to a predetermined threshold value. If threshold difference is less than the relative difference between the background of subsequent spectral data sets, the steps of collecting a series of spectra data sets is automatically repeated. In the spectrum acquisition phase, a series of Raman data sets of the sample are collected until a target SNR is obtained.
摘要:
The disclosure provides for a system and method for detecting a threat agent. A sample is illuminated to produce photons Raman scattered and emitted by the sample. The Raman scattered photons are collected using time-gated detection without collecting the emitted photons. A Raman spectroscopic data set is generated from said Raman scattered photons wherein said Raman spectroscopic data comprises at least one of a Raman spectrum and a Raman chemical image. The Raman spectroscopic data is assessed to thereby determine the presence or absence of a threat agent in the sample. The sample may be in a target area. The sample may be illuminated using a pulsed laser or an intensity modulated laser. The illumination source may be synchronized with a gating element that enables time-gated detection.
摘要:
The disclosure relates to a substrate material for the improved detection, resolution and imaging of biological material for spectroscopic characterization by Raman of optical imaging spectroscopy. The substrate provides a uniform, optically flat, highly reflective surface which can be made hydrophobic to prevent spreading of the sample and facilitating its optical evaluation. Moreover, the substrate can be coated with a material that does not emit Raman scattered photons when exposed to said illuminating photons. The principles disclosed herein allow a low spectroscopic background particularly suitable for examining small samples or samples having low concentrations of the suspected component.