Abstract:
A system for combining power to a load in a Powered Device (PD) using Power Over Ethernet (PoE) receives power from a first channel and power from a second channel, via four pairs of wires. A MOSFET bridge for each channel is initially disabled. A bridge controller IC simultaneously senses all the voltages and controls the bridge MOSFETs. The bridge controller IC also contains a first PoE handshaking circuit. A second PoE handshaking circuit is external to the bridge controller IC and operates independently. The body diodes in the MOSFET bridge initially couple the first channel to the second PoE handshaking circuit while isolating the second channel. The second handshaking circuit then couples the first channel to the load. The first handshaking circuit then carries out a PoE handshaking routine for the second channel. Ultimately, the bridge controller controls the bridge MOSFETs to couple both channels to the load.
Abstract:
Method and system for measuring the resistance of a resistive structure having at least three nodes. A first calibration signal is determined by measuring a voltage at an output of the resistance structure when no calibration current is injected into a third node between the first and second nodes of the structure. A calibration current is then injected into the third node and a second calibration signal is determined. The absolute value of the difference between the first calibration signal and the second calibration signal is determined, the absolute value being proportional to a product of the resistance of the resistive structure and the calibration current.
Abstract:
A novel system is offered for supplying power from an input node to a load coupled to an output node. The system may have multiple switches coupled between the input node and the output node. One or more limiting circuits may be configured for controlling the switches so as to limit outputs of the switches. For example, the limiting circuits may limit current through the respective switches. One or more timers may set a delay period for indicating a fault condition after the limiting is initiated.
Abstract:
A linear regulator integrated circuit may be formed having four external terminals including a voltage input (Vin) terminal, a voltage output (Vout) terminal, a Set terminal, and an operational amplifier (op amp) power terminal. A user connects an external resistor to the Set terminal for creating a reference voltage. An op amp controls a pass (or series transistor) to cause an output voltage at the Vout terminal to equal the reference voltage. The op amp has a first power supply terminal internally coupled to the Vin terminal and a second power supply terminal coupled to the op amp power terminal. The op amp power terminal allows a user to externally couple the op amp second power supply terminal to either the Vout pin (for high voltage applications), system ground (for medium voltage applications), or another voltage (to provide additional headroom in very low voltage applications).
Abstract:
A method of improving the slew rate of an amplifier is described where a differential pair of transistors receives a differential first control signal and second control signal. The tail current for the transistors is provided by a tail current regulator. The same control signals are applied to a slew boost controller, whose output increases as the differential between the control signals increase. The tail current regulator generates a bias signal that sets a minimum tail current. The tail current is controlled to be the minimum tail current until the slew boost output signal exceeds a threshold, whereupon the tail current increases in response to an increasing differential between the control signals. Common mode rejection is not adversely affected by the slew boost controller generating a slightly varying current under common mode conditions due to the minimum tail current.
Abstract:
A method and a circuit dynamically adjust a frequency of a clock signal that drives the operations of a power converter. The method includes (a) detecting a change from a predetermined value in an output voltage of the power converter; and (b) upon detecting the change, changing the frequency of the clock signal so as to restore the output voltage. The change, such as a load step-up, may be detected by comparing a feedback signal generated from the output voltage and a predetermined threshold voltage. In one implementation, changing the switching frequency is achieved in increasing (e.g., doubling) the frequency of the clock signal, as needed. The frequency of the clock signal need only be changed for a predetermined time period.
Abstract:
Methods and systems for a differential correlated double sampling (CDS) switched capacitor integrator circuit. The circuit includes a differential amplifier that has a differential input and a differential output. There is a first feedback path between the negative output node and the positive input node, and a second feedback path between the positive output node and the negative input node. Each feedback path includes an integration capacitor and at least one switch that has a parasitic capacitance. A first capacitive element is coupled between the negative input node and the negative output node, and a second capacitive element is coupled between the positive input node and the positive output node. Each capacitive element is configured to cancel the parasitic capacitance of its corresponding feedback path.
Abstract:
An RMS-DC converter includes a chopper-stabilized square cell that eliminates offset, thus enabling high-bandwidth operation. The chopper-stabilized offset requires only a small portion of the circuitry (i.e., a single component square cell) which operates at high frequencies, and is amenable to using high-bandwidth component square cells. Using the chopping technique minimizes required device sizes without compromising an acceptable square cell dynamic range, thereby maximizing the square cell bandwidth. The RMS-DC converter consumes less power than conventional RMS-to-DC converters that requires a high-frequency variable gain amplifier.
Abstract:
Method and system for measuring the resistance of a resistive structure having at least three nodes. A first calibration signal is determined by measuring a voltage at an output of the resistance structure when no calibration current is injected into a third node between the first and second nodes of the structure. A calibration current is then injected into the third node and a second calibration signal is determined. The absolute value of the difference between the first calibration signal and the second calibration signal is determined, the absolute value being proportional to a product of the resistance of the resistive structure and the calibration current.
Abstract:
A power supply system includes a regulator circuit responsive to an input signal at the input node for producing an output signal at the output node at a desired level. The regulator circuit has a controller, an inductive element and a first switch coupled to the inductor element and controlled by the controller to produce the output signal. Also, the power supply system includes a Coulomb counter for producing a Coulomb count signal proportional to the number of Coulombs passing from the input node to the output node. The Coulomb counter is enabled by an enabling signal representing a predetermined time period, for determining the number of Coulombs passing from the input node to the output node during that predetermined time period.