摘要:
One or more of a contact lithography module, a pattern tool and a substrate include a strain control region to prevent deformation-related misalignment.
摘要:
A contact lithography apparatus, system and method use a hydraulic deformation to facilitate pattern transfer. The apparatus, system and method include a spacer that provides a spaced apart proximal orientation of lithographic elements, and a hydraulic force member that provides the hydraulic deformation. One or more of the lithographic elements and the spacer is deformable, such that hydraulic deformation thereof facilitates the pattern transfer.
摘要:
Various embodiments of the present invention are directed to crossbar array designs that interfaces wires to address wires, despite misalignments between electrical components and wires. In one embodiment, a nanoscale device may be composed of a first layer of two or more wires and a second layer of two or more address wires that overlays the first layer. The nanoscale device may also include an intermediate layer positioned between the first layer and the second layer. Two or more redundant electrical component patterns may be fabricated within the intermediate layer so that one or more of the electrical component patterns is aligned with the first and second layers.
摘要:
A method and system are disclosed for aligning a lithography template having a pattern with a substrate in preparation for transferring the pattern to a surface of the substrate. The system includes an optical imaging system adapted to image a first alignment structure formed on a top surface of the template using light of a first wavelength and a second alignment structure formed on a top surface of the substrate using light of a second wavelength.
摘要:
An apparatus for forming a pattern in a curable material carried on a substrate having one or more components with coefficients of thermal expansion that are substantially equal to the coefficient of thermal expansion of the substrate.
摘要:
Various embodiments of the present invention are directed to crossbar array designs that interfaces wires to address wires, despite misalignments between electrical components and wires. In one embodiment, a nanoscale device may be composed of a first layer of two or more wires and a second layer of two or more address wires that overlays the first layer. The nanoscale device may also include an intermediate layer positioned between the first layer and the second layer. Two or more redundant electrical component patterns may be fabricated within the intermediate layer so that one or more of the electrical component patterns is aligned with the first and second layers.
摘要:
Raman systems include a radiation source, a radiation detector, and a Raman device or signal-enhancing structure. Raman devices include a tunable resonant cavity and a Raman signal-enhancing structure coupled to the cavity. The cavity includes a first reflective member, a second reflective member, and an electro-optic material disposed between the reflective members. The electro-optic material exhibits a refractive index that varies in response to an applied electrical field. Raman signal-enhancing structures include a substantially planar layer of Raman signal-enhancing material having a major surface, a support structure extending from the major surface, and a substantially planar member comprising a Raman signal-enhancing material disposed on an end of the support structure opposite the layer of Raman signal-enhancing material. The support structure separates at least a portion of the planar member from the layer of Raman signal-enhancing material by a selected distance of less than about fifty nanometers.