摘要:
A pattern inspection method and apparatus are disclosed, the method has the steps of generating a reference digital image signal to be compared with a detection digital image signal detected continuously from the desired band-shaped inspection area on an object to be inspected, determining zero or one or more candidate , matching positions between the detection digital image signal and the reference digital image signal for each block unit area sequentially cut out and calculating a mass of candidate matching positions over the entire band-shaped inspection area, determining an accurate matching position between the detection digital image signal and the reference digital image signal for each block unit area based on the continuity of the block unit areas from the calculated mass of candidate matching positions over the entire band-shaped inspection area, and determining a defect by matching the positions based on the determined accurate matching position for each block unit area and comparing the images.
摘要:
In monitoring of an exposure process, a highly isolative pattern greatly changed in a shape of cross section by fluctuations in the exposure dose and the focal position is an observation target. Especially, to detect a change in a resist shape of cross section from a tapered profile to an inverse tapered profile, one of the following observation methods is employed to obtain observation data: (1) a tilt image of a resist pattern is imaged by using tilt imaging electron microscopy, (2) an electron beam image of a resist pattern is imaged under imaging conditions for generating asymmetry on an electron beam signal waveform, and (3) scattering characteristic data of a resist pattern is obtained by an optical measurement system. The observation data is applied to model data created beforehand in accordance with the exposure conditions to estimate fluctuations in the exposure dose and the focal position.
摘要:
In order to provide a high-speed, inexpensive inspection system that has a short development period, that is flexible, and that allow algorithms to be easily changed, a PC equipped with an image input feature is used to capture an image detected by a line image sensor, this detected image is transferred to a plurality of PCs connected by a LAN, and defects are detected using software processing on the plurality of PCs.
摘要:
In order to accurately monitor changes in exposure conditions (changes in exposure level and focus) at a product wafer level during lithography, changes in exposure conditions can be calculated by acquiring electron beam images of a first pattern portion and a second pattern portion different from one another in terms of the tendency of the changes in dimensional characteristic quantities against the changes in exposure conditions, then calculating the respective dimensional characteristic quantities of the first pattern portion and the second pattern portion, and applying these dimensional characteristic quantities to the models which logically link the exposure conditions and the dimensional characteristic quantities. Hereby, it is possible to supply the process conditions change monitoring systems and methods that enable output of accurate changes in exposure level and focus.
摘要:
The present invention provides a scanning electron microscope (SEM) or optical inspection method and apparatus which correct differences in brightness between comparison images and thus which is capable of detecting a fine defect with a high degree of reliability without causing any false defect detection. According to the present invention, the brightness values of a pattern, which should be essentially the same, contained in two detected images to be compared are corrected in such a manner that, even if there may be a brightness difference in a portion free from defects, the brightness difference is reduced to such a degree so that it can be recognized as a normal portion. Also, a limit for the amount of correction is furnished in advance, and correction exceeding such limit value is not performed. Such correction prevents the difference in brightness that should be permitted as non-defective from being falsely recognized as a defect without overlooking great differences in brightness due to a defect.
摘要:
The present invention relates to detection of defects with simple specification of the coordinates, in the inspection of an object having a plurality of patterns in which a portion having the two-dimensional repetition and portions having the repetition only in the X direction and in the Y direction are mixedly present. The cross comparison between a notice point and comparison points, for example, which are repetitive pitches away from the notice point, is carried out, and only the portion having the difference which can be found out with any of the comparison points is extracted as a defect candidate, which results in that the portion having the two-dimensional repetition as well as the portion having the repetition only in the X direction or in the Y direction can be inspected. As a result, while the portion, such as an isolated point, having no repetition both in the X direction and in the Y direction is extracted as the defect candidate, the defect candidate is not treated as the defect in the case where the defect candidate of interest occurs regularly in a plurality of objects to be inspected, so that such a defect candidate is excluded to extract only a true defect.
摘要:
A model based measurement method is capable of estimating a cross-sectional shape by matching various pre-created cross-sectional shapes with a library of SEM signal waveforms. The present invention provides a function for determining whether or not it is appropriate to create a model of a cross-sectional shape or a function for verifying the accuracy of estimation results to a conventional model based measurement method, wherein a solution space (expected solution space) is obtained by matching library waveforms and is displayed before measuring the real pattern by means of model based measurement. Moreover, after the real pattern is measured by means of model based measurement, the solution space (real solution space) is obtained by matching the real waveforms with the library waveforms and is displayed.
摘要:
An apparatus and method for inspecting a defect of a circuit pattern formed on a semiconductor wafer includes a defect classifier have a comparison shape forming section for forming a plurality of comparison shapes corresponding to an SEM image of an inspection region by deforming the shape of the circuit pattern in accordance with a plurality of shape deformation rules using design data corresponding to the circuit pattern within the inspection region and a shape similar to the SEM image of the inspection region out of the plurality of comparison shapes formed and selected as the comparison shape, and a shape comparing and classifying section for classifying the SEM image using information of the comparison shape selected in the comparison shape forming section and the inspection shape of the circuit pattern of the SEM image of the inspection region.
摘要:
The present invention is for providing a scanning electron microscope system adapted to output contour information fitting in with the real pattern edge end of a sample, and is arranged to generate a local projection waveform by projecting the scanning electron microscope image in the tangential direction with respect to the pattern edge at each point of the pattern edge of the scanning electron microscope image, estimate the cross-sectional shape of the pattern transferred on the sample by applying the local projection waveform generated at each point to a library, which has previously been created, correlating the cross-sectional shape with the electron beam signal waveform, obtain position coordinate of the edge end fitting in with the cross-sectional shape, and output the contour of the pattern as a range of position coordinates.
摘要:
Provided is a method for evaluating superimposition of a pattern, wherein an alignment shift quantity and a shift direction can be evaluated at a discretionary position within an exposure shot. The method uses a superimposition evaluation pattern, and the image of the superimposition evaluation pattern is acquired (S1) using electron microscopes (10, 109), the shift quantity and direction in each exposure step are calculated (S2) by comparing the acquired image with layout information, which has been registered in a storage section (111) and is on the layout with which the superimposition evaluation pattern is to be arranged, and the evaluation results are displayed (S3).