Abstract:
A glass element having a thickness from 25 μm to 125 μm, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress σI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
Abstract:
A glass-based article including a first surface and a second surface opposing the first surface defining a thickness (t) of about 3 millimeters or less (e.g., about 1 millimeter or less), and a stress profile, wherein all points of the stress profile between a thickness range from about 0·t up to 0.3·t and from greater than about 0.7·t to t, comprise a tangent with a slope having an absolute value greater than about 0.1 MPa/micrometer. In some embodiments, the glass-based article includes a non-zero metal oxide concentration that varies along at least a portion of the thickness (e.g., 0·t to about 0.3·t) and a maximum central tension of less than about 71.5/√(t) (MPa). In some embodiments, the concentration of metal oxide or alkali metal oxide decreases from the first surface to a point between the first surface and the second surface and increases from the point to the second surface. The concentration of the metal oxide may be about 0.05 mol % or greater or about 0.5 mol % or greater throughout the thickness. Methods for forming such glass-based articles are also disclosed.
Abstract:
An electronic device assembly includes a backplane having a glass composition substantially free of alkali ions, an elastic modulus of about 40 GPa to about 100 GPa, and a final thickness from about 20 μm to about 100 μm. The primary surfaces of the backplane are characterized by a prior material removal to the final thickness from an initial thickness that is at least 20 μm greater than the final thickness. The assembly also includes a protect layer on the first primary surface of the backplane; and a plurality of electronic components on the second primary surface of the backplane. In addition, the backplane is configured with at least one static bend having a bend radius between about 25 mm and about 5 mm. The electronic components of the electronic device assembly can include at least one thin film transistor (TFT) element or organic light emitting diode (OLED) element.
Abstract:
Glass-based article including a first surface and a second surface opposing the first surface defining a thickness (t), and a stress profile are disclosed having a thickness (t) of about 3 millimeters or less, and wherein all points of the stress profile between a thickness range from about 0·t up to 0.3·t and from greater than 0.7·t, comprise a tangent with a slope that is less than about −0.1 MPa/micrometers or greater than about 0.1 MPa/micrometers. Also disclosed are glass-based articles having a thickness (t) in a range of 0.1 mm and 2 mm; and wherein at least one point of the stress profile in a first thickness range from about 0·t up to 0.020·t and greater than 0.98·t comprises a tangent with a slope of from about −200 MPa/micrometer to about −25 MPa/micrometer or about 25 MPa/micrometer to about 200 MPa/micrometer, and wherein all points of the stress profile in a second thickness range from about 0.035·t and less than 0.965·t comprise a tangent with a slope of from about −15 MPa/micrometer to about 15 MPa/micrometer.
Abstract:
A strengthened antimicrobial glass including greater from about 50.0 mol. % to about 65.0 mol. % SiO2, about 14.0 mol. % to about 22.0 mol. % Al203, about 14.0 mol. % to about 22.0 mol. % R2O, wherein R is an alkali metal, and about 4.0 mol. % to 10.0 mol. % P2O5. The glass may have a compressive stress layer having a thickness of greater than or equal to about 20 μm less than or equal to about 60 μm and having a compressive stress of greater than or equal to about 700 MPa. The glass may have an antimicrobial activity greater than or equal to about 1.0 log kill at about 23 ° C. and about 40.0% relative humidity. A method for making the glass may include obtaining a glass article, strengthening the glass article by contact with a first ion-exchange liquid, and contacting the glass article with second ion-exchange liquid comprising an antimicrobial agent.
Abstract:
A strengthened antimicrobial glass including greater from about 50.0 mol. % to about 65.0 mol. % SiO2, about 14.0 mol. % to about 22.0 mol. % Al2O3, about 14.0 mol. % to about 22.0 mol. % R2O, wherein R is an alkali metal, and about 4.0 mol. % to 10.0 mol. % P2O5. The glass may have a compressive stress layer having a thickness of greater than or equal to about 20 μm to less than or equal to about 60 μm and having a compressive stress of greater than or equal to about 700 MPa. The glass may have an antimicrobial activity greater than or equal to about 1.0 log kill at about 23° C. and about 40.0% relative humidity. A method for making the glass may include obtaining a glass article, strengthening the glass article by contact with a first ion-exchange liquid, and contacting the glass article with second ion-exchange liquid comprising an antimicrobial agent.
Abstract:
Described herein are various antimicrobial glass articles that have improved resistance to discoloration when exposed to harsh conditions. The improved antimicrobial glass articles described herein generally include a glass substrate that has a low concentration of nonbridging oxygen atoms, a compressive stress layer and an antimicrobial silver-containing region that each extend inward from a surface of the glass substrate to a specific depth, such that the glass article experiences little-to-no discoloration when exposed to harsh conditions. Methods of making and using the glass articles are also described.
Abstract:
A glass element having a thickness from 25 μm to 125 μm, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress σI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
Abstract:
Described herein are various antimicrobial glass articles that have improved strength and resistance to discoloration. The improved antimicrobial glass articles described herein generally include a glass substrate with a compressive stress layer and an antimicrobial silver-containing region that each extend inward from a surface of the glass substrate to a specific depth. In some embodiments, the compressive stress layer has a compressive stress at the surface of about 500 MPa or greater and the compressive stress decreases monotonically from the surface into the depth of the glass substrate. Methods of making and using the glass articles are also described and include forming a compressive stress layer and forming an antimicrobial silver-containing region by preferentially exchanging a plurality of silver cations in a silver-containing medium for a specific plurality of first cations ions in the glass substrate.
Abstract:
Glasses comprising SiO2, Al2O3, and P2O5 that are capable of chemical strengthened by ion exchange and having high damage resistance. These phosphate-containing glasses have a structure in which silica (SiO2) is replaced by aluminum phosphate (AlPO4) and/or boron phosphate (BPO4).
Abstract translation:包含SiO 2,Al 2 O 3和P 2 O 5的玻璃,其能够通过离子交换化学强化并具有高耐损伤性。 这些含磷酸盐的玻璃具有其中二氧化硅(SiO 2)被磷酸铝(AlPO 4)和/或磷酸硼(BPO 4)代替的结构。