摘要:
A carbon nanotube film includes a plurality of carbon nanotubes. The plurality of carbon nanotubes is arranged approximately along a same first direction. The plurality of carbon nanotubes are joined end to end by van der Waals attractive force therebetween. The carbon nanotube film has a uniform width. The carbon nanotube film has substantially the same density of the carbon nanotubes along a second direction perpendicular to the first direction. The change in density across the width is within 10 percent. The present application also relates to a carbon nanotube film precursor and a method for making the carbon nanotube film.
摘要:
The present disclosure provides a method for making a carbon nanotube wire structure. A plurality of carbon nanotube arrays is provided. One carbon nanotube film is formed by drawing a number of carbon nanotubes from each of the plurality of carbon nanotube arrays, whereby a plurality of carbon nanotube films is formed. The carbon nanotube films converge at one spot. The carbon nanotube wire structure is formed by treating the carbon nanotube films via at least one of a mechanical method and an organic solvent method.
摘要:
A carbon nanotube film includes a plurality of successively oriented carbon nanotubes joined end-to-end by Van der Waals attractive force therebetween. The carbon nanotubes define a plurality of first areas and a plurality of second areas. The first areas and the second areas have different densities of carbon nanotubes. A method for manufacturing the same is also provided. A light source using the carbon nanotube film is also provided.
摘要:
A method for packaging the vacuum device includes providing a pre-packaged container having an exhaust through hole defined therein and a sealing element placed into the exhaust through hole, pumping the pre-packaged container to create a vacuum, heating and softening the sealing element to seal the exhaust through hole, and cooling the melted low-melting glass to package the pre-packaged container.
摘要:
A light-emitting diode includes a substrate (110), a reflective layer (120), a second diffraction grating (130), a first semiconductor layer (142), an active layer (144), a second semiconductor layer (146), a transparent electrode layer (148), and a first diffraction grating (150), arranged in that order. The first diffraction grating and the second diffraction grating is composed of an array of parallel and equidistant grooves, and a inclined angle between the grooves of the first diffraction grating and the grooves of the second diffraction grating is equal to or more than 0° and equal to or less than 90°. One of the first semiconductor layer and the second semiconductor layer is an N-type semiconductor and the other thereof is a P-type semiconductor. The light-emitting diode has high light extraction efficiency and is easy to manufacture at a low cost.
摘要:
A method for manufacturing a transparent conductive film on a glass structure, the method including the steps of: preparing a carbon nanotube slurry; applying a carbon nanotube slurry layer onto the glass structure; drying the carbon nanotube slurry layer on the glass structure; and solidifying the carbon nanotube slurry layer on the glass structure at an approximate temperature of 300˜500° C. and under protection of an inert gas, in order to form the transparent conductive film on the glass structure.
摘要:
A triode field emission device (100) includes a sealed container (110) having a light permeable portion (120), a phosphor layer (130) formed on the light permeable portion in the sealed container, an anode (140) formed on the phosphor layer, a cathode (150) arranged in the sealed container and facing the light permeable portion, and a grid (160) arranged in the sealed container and between the cathode and the anode. The cathode has a carbon nanotube yarn (151) facing toward the light permeable portion configured for serving as an emission source for electrons.
摘要:
A given field emission element includes a carbon nanotube field emission wire and at least one supporting protective layer coating an outer surface of the carbon nanotube field emission wire. The carbon nanotube field emission wire is selected from a group consisting of a carbon nanotube yarn, a wire-shaped CNT-polymer composite, and a wire-shaped CNT-glass composite. A method for manufacturing the described field emission element includes the steps of: (a) providing one carbon nanotube field emission wire; (b) forming one supporting protective layer on an outer surface of the carbon nanotube field emission wire; and (c) cutting the carbon nanotube field emission wire to a predetermined length and treating the carbon nanotube emission wire to form the field emission element.
摘要:
A thermionic emission device includes an insulating substrate, a patterned carbon nanotube film structure, a positive electrode and a negative electrode. The insulating substrate includes a surface. The surface includes an edge. The patterned carbon nanotube film structure is partially arranged on the surface of the insulating substrate. The patterned carbon nanotube film structure includes two strip-shaped arms joined at one end to form a tip portion protruded from the edge of the surface of the insulating substrate and suspended. The patterned carbon nanotube film structure includes a number of carbon nanotubes parallel to the surface of the insulating substrate. The patterned carbon nanotube film structure is connected between the positive electrode and the negative electrode in series.
摘要:
A method for making epitaxial structure is provided. The method includes providing a substrate having an epitaxial growth surface, growing a buffer layer on the epitaxial growth surface; placing a graphene layer on the buffer layer; epitaxially growing an epitaxial layer on the buffer layer; and removing the substrate. The graphene layer includes a number of apertures to expose a part of the buffer layer. The epitaxial layer is grown from the exposed part of the buffer layer and through the apertures.